在Tarjan算法的过程中维护一个栈,并按如下方法维护其中的元素
1:当一个节点第一次被访问时,入栈。
2:当割点判定法则中dfn[x]<=Low[y]成立时
无论X是否为根,都要
1:从栈顶不断顶出节点,直到节点Y被弹出
2:刚才弹出的所有节点与节点X一起构成一个V-DCC
注意节点X还在栈中
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int N = 20010, M = 200010;
int head[N], ver[M], Next[M];
int dfn[N], low[N], stack[N], new_id[N], c[N], belong[M];
int d[N], dist[N], f[N][16];
int n, m, t, tot, num, root, top, cnt, tc;
bool cut[N];
vector<int> dcc[N];
int hc[N], vc[M], nc[M];
queue<int> q;
void add(int x, int y)
{
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
}
void add_c(int x, int y)
{
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}
void tarjan(int x)
{
dfn[x] = low[x] = ++num;
stack[++top] = x;
if (x == root && head[x] == 0)
{
dcc[++cnt].push_back(x);
return;
}
int flag = 0;
for (int i = head[x]; i; i = Next[i])
{
int y = ver[i];
if (!dfn[y])
{
tarjan(y);
low[x] = min(low[x], low[y]);
if (low[y] >= dfn[x])
//x-->y,发现low[y]>=dfn[x],则X是一个割点
{
flag++;
if (x != root || flag > 1) //如果X不为根,或者X为根,但有两个子树时
cut[x] = true;
cnt++;
int z;
do
//将栈中的元素不断弹出来,直到Y这个结点
{
z = stack[top--];
dcc[cnt].push_back(z);
}
while (z != y);
dcc[cnt].push_back(x);//将X这个点也加入点双中,但X仍在栈中
}
}
else low[x] = min(low[x], dfn[y]);
}
}
int main()
{
cin>>n>>m;
memset(head, 0, sizeof(head));
memset(hc, 0, sizeof(hc));
memset(dfn, 0, sizeof(dfn));
memset(d, 0, sizeof(d));
memset(cut, 0, sizeof(cut));
memset(c, 0, sizeof(c));
for (int i = 1; i <= n; i++) dcc[i].clear();
tot = 1; num = cnt = top = 0;
for (int i = 1; i <= m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) root = i, tarjan(i);
for (int i=1;i<=cnt;i++)
{
cout<<"e-dcc "<<i<<endl;
for (int j=0;j<dcc[i].size();j++)
cout<<dcc[i][j]<<" ";
cout<<endl;
}
}
/*
4 4
1 2
2 4
2 3
3 4
*/
运行结果
e-dcc 1
4 3 2
e-dcc 2
2 1