宁波市的中小学生们在镇海中学参加程序设计比赛之余,热情的主办方邀请同学们参观镇海中学内的各处景点,已知镇海中学内共有n处景点。现在有n位该校的学生志愿承担导游和讲解任务。每个学生志愿者对各个景点的熟悉程度是不同的,如何将n位导游分配至n处景点,使得总的熟悉程度最大呢?要求每个景点处都有一个学生导游。
输入
输入文件daoyou.in中有若干行:
第一行只有一个正整数n,表示有n个景点和n个学生导游。
第二行至第n+1行共n行,每行有n个以空格分隔的正整数。第i+1行的第j个数k(1≤k≤1000),表示第i个学生导游对景点j的熟悉程度为k。
输出
输出文件daoyou.out只有一行,该行只有一个正整数,表示求得的熟悉程度之和的最大值。
样例输入
3 10 6 8 9 2 3 1 7 2
样例输出
24
数据范围
50%的数据,1≤n≤9。
100%的数据,1≤n≤17。
纯粹的暴力,过不了的
#include <bits/stdc++.h>
using namespace std;
struct stu
{
int a[20];
}s[20];
int n,maximum = 0;
bool vis[20] = {false};
void dfs(int depth, int sum){
if(depth >= n){
if(sum > maximum)
maximum = sum;
return;
}
for (int i = 0; i < n; ++i)
{
if(!vis[i]){
vis[i] = true;
dfs(depth+1, sum + s[i].a[depth]);
vis[i] = false;
}
}
}
int main()
{
scanf("%d",&n);
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
scanf("%d",&s[i].a[j]);
}
}
dfs(0,0);
printf("%d
", maximum);
return 0;
}
加下剪枝
#include <bits/stdc++.h>
using namespace std;
int n;
int s[20];
int a[20][20];
int vis[20];
int ans;
void dfs(int step, int sum){
if(step == n){
ans = max(ans,sum);
return;
}
if(sum + s[step] <= ans)
return;
for (int i = 0; i < n; ++i)
{
if(!vis[i])
{
vis[i] = 1;
dfs(step + 1, sum + a[step][i]);
vis[i] = 0;
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; ++i)
{
int m = 0;
for (int j = 0; j < n; ++j)
{
cin >> a[i][j];
m = max(m,a[i][j]); //取出每一行的最大值
}
s[i] = m;
}
for (int i = n-1; i >= 0; --i)
{
s[i] += s[i+1];
//s[i]代表从第i行到第N行,每行取最大值时,可以取到的最优值
}
dfs(0,0);
cout << ans << endl;
return 0;
}
正解为状态压缩DP.时间复杂度为O(N*2^N)
#include <bits/stdc++.h>
using namespace std;
int n,a[20][20],f[20][250000];
int main()
{
scanf("%d",&n);
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)
scanf("%d",&a[i][j]);
memset(f,128,sizeof(f));
f[0][0]=0;
for (int i=1; i<=n; i++)
for (int j=0; j<=(1<<n)-1; j++)
if (f[i-1][j]>=0)
{
for (int x=0; x<=n-1; x++)
if (((1<<x)&j)==0)
f[i][j|(1<<x)]=max(f[i][j|(1<<x)],f[i-1][j]+a[i][x+1]);
}
printf("%d
",f[n][(1<<n)-1]);
return 0;
}
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=17;
int a[maxn+1][maxn+1];
int dp[1<<maxn];
int n,num;
int main()
{
cin>>n;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
cin>>a[i][j];
memset(dp,0,sizeof(dp));
for (int sta=1;sta<=(1<<n)-1;sta++)
{
num=0;
for (int j=0;j<n;j++)
if ((sta&(1<<j))>0) num++;
for (int i=1;i<=n;i++)
if (sta&(1<<(i-1)))
dp[sta]=max(dp[sta],dp[sta-(sta&(1<<(i-1)))]+a[num][i]);
}
cout<<dp[(1<<n)-1];
return 0;
}
有兴趣的可以写下KM算法