zoukankan      html  css  js  c++  java
  • 【LEETCODE】66、字符串分类,hard级别,题目:32,72,76

    package y2019.Algorithm.str.hard;
    
    import java.util.Stack;
    
    /**
     * @ProjectName: cutter-point
     * @Package: y2019.Algorithm.str.hard
     * @ClassName: LongestValidParentheses
     * @Author: xiaof
     * @Description: 32. Longest Valid Parentheses
     *
     * Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.
     *
     * Example 1:
     *
     * Input: "(()"
     * Output: 2
     * Explanation: The longest valid parentheses substring is "()"
     * Example 2:
     *
     * Input: ")()())"
     * Output: 4
     * Explanation: The longest valid parentheses substring is "()()"
     *
     * 求最长有效括号对,那么就是要确保子串是连续
     * @Date: 2019/8/6 9:51
     * @Version: 1.0
     */
    public class LongestValidParentheses {
    
        public int solution(String s) {
            //用来统计最大的括号数,我们只要能匹配成功就行
            Stack<Integer> stack = new Stack();
            char[] ss = s.toCharArray();
            int n = ss.length, res = 0;
    
            //遍历
            for (int i = 0; i < ss.length; ++i) {
                if (ss[i] == '(') {
                    stack.push(i); //用来存放int位置
                } else {
                    if (!stack.isEmpty()) {
                        //如果不为空,那么就可以进行匹配
                        if (ss[stack.peek()] == '(') stack.pop();
                        else stack.push(i);
                    } else {
                        stack.push(i);
                    }
                }
            }
            //我们只需要统计剩下无法匹配的连续的(的数据比较就可以了
            //如果栈为空,那么正好完全匹配
            if (stack.isEmpty()) {
                res = n;
            } else {
                //如果不是完全匹配,那么就要计算连续两个(的间隔
                int r = n, l = 0;
                while (!stack.isEmpty()) {
                    //不断获取最后的结束符号位置
                    l = stack.pop();
                    //取最长的串位置
                    res = Math.max(r - l - 1, res);
                    r = l; //更新位置
                }
                //最后还要判断从起始位置开始到当前位置消掉的长度
                res = Math.max(r, res);
            }
            return res;
        }
    }
    package y2019.Algorithm.str.hard;
    
    /**
     * @ProjectName: cutter-point
     * @Package: y2019.Algorithm.str.hard
     * @ClassName: MinDistance
     * @Author: xiaof
     * @Description: 72. Edit Distance
     * Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
     *
     * You have the following 3 operations permitted on a word:
     *
     * Insert a character
     * Delete a character
     * Replace a character
     * Example 1:
     *
     * Input: word1 = "horse", word2 = "ros"
     * Output: 3
     * Explanation:
     * horse -> rorse (replace 'h' with 'r')
     * rorse -> rose (remove 'r')
     * rose -> ros (remove 'e')
     * Example 2:
     *
     * Input: word1 = "intention", word2 = "execution"
     * Output: 5
     * Explanation:
     * intention -> inention (remove 't')
     * inention -> enention (replace 'i' with 'e')
     * enention -> exention (replace 'n' with 'x')
     * exention -> exection (replace 'n' with 'c')
     * exection -> execution (insert 'u')
     * @Date: 2019/8/7 11:42
     * @Version: 1.0
     */
    public class MinDistance {
    
        public int solution(String word1, String word2) {
            int w1 = word1.length(), w2 = word2.length();
            char w1s[] = word1.toCharArray(), w2s[] = word2.toCharArray();
            int[][] dpcost = new int[w1 + 1][w2 + 1];
    
            //初始化
            for (int i = 0; i <= w1; ++i) {
                dpcost[i][0] = i; //标识要把word1的i个字符化为0个,那就删i次
            }
            for (int j = 0; j <= w2; ++j) {
                dpcost[0][j] = j;
            }
            //这题动态规划了,比较复杂说实话
    
            //遍历
            for (int i = 1; i < dpcost.length; ++i) {
                for (int j = 1; j < dpcost[i].length; ++j) {
                    //我们把动态规划递增的量设置为,word1前i个字符,转换为word2前j个字符需要的最小操作数
                    //f(i,j) = f(i-1, j-1) 当word1[i] == word2[j]的时候,相等字符,那么当前字符就不需要花费操作次数
                    if (w1s[i - 1] == w2s[j - 1]) {
                        dpcost[i][j] = dpcost[i - 1][j - 1];
                    } else {
                        //当word1[i] != word2[j]的时候 分三种情况平衡
                        //1.进行插入操作, 那就是新增一个一样的字符和word2进行匹配,那就是word2的j位就直接新增进去,就不用比较了,我们取没有j号的次数
                        // f(i,j) = f(i, j-1) + 1;
                        int insert = dpcost[i][j - 1];
                        //2.当进行删除操作,那就是把word1当前字符删除掉,当前位置相当于不比较
                        // f(i,j)=f(i-1,j) + 1;
                        int remove = dpcost[i - 1][j];
                        //3.当进行替换操作,那就是把当前字符完全替换,那么就是新增一个操作,其余和之前一样
                        // f(i,j)=f(i-1,j-1) + 1;
                        int replace = dpcost[i - 1][j - 1];
    
                        dpcost[i][j] = Math.min(insert, Math.min(remove, replace)) + 1;
                    }
                }
            }
    
            return dpcost[w1][w2];
    
        }
    }
    package y2019.Algorithm.str.hard;
    
    import java.util.HashMap;
    import java.util.Map;
    
    /**
     * @ProjectName: cutter-point
     * @Package: y2019.Algorithm.str.hard
     * @ClassName: MinWindow
     * @Author: xiaof
     * @Description: 76. Minimum Window Substring
     * Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
     *
     * Example:
     *
     * Input: S = "ADOBECODEBANC", T = "ABC"
     * Output: "BANC"
     * Note:
     *
     * If there is no such window in S that covers all characters in T, return the empty string "".
     * If there is such window, you are guaranteed that there will always be only one unique minimum window in S.
     * @Date: 2019/8/7 15:15
     * @Version: 1.0
     */
    public class MinWindow {
    
        public String solution(String s, String t) {
            if (s == null || t == null || s.length() < t.length() || s.length() == 0 || t.length() == 0) {
                return "";
            }
            //用索引,并且是单次循环
            int l = 0, r = 0, count = t.length(), minle = s.length(), minl = 0, minr = 0;
            Map<Character, Integer> map = new HashMap();
            boolean pipeiok = false;
            //第一次循环,初始化map
            for (int i = 0; i < t.length(); ++i) {
                map.put(t.charAt(i), map.getOrDefault(t.charAt(i), 0) + 1);
            }
    
            //循环遍历字符串
            while (r < s.length()) {
                //计算是否存在所有字符的子串
                char curc = s.charAt(r);
                if (map.containsKey(curc)) {
                    //如果包含
                    map.put(curc, map.get(curc) - 1);
                    if (map.get(curc) >= 0) {
                        //如果有效匹配
                        --count;
                    }
                }
    
                //如果全部匹配完成,存在单字符匹配
                while (count == 0 && l <= r) {
                    pipeiok = true;
                    int curlen = r - l + 1;
                    if (curlen <= minle) {
                        //存在更小值
                        minl = l;
                        minr = r;
                        minle = curlen;
                    }
    
                    //更新最左边索引
                    char leftc = s.charAt(l);
                    if (map.containsKey(leftc)) {
                        //如果包含,那么就找到了最左边的第一个字符
                        //我们把这个位置的字符剔除掉,然后看是否可以找到更小的子串
                        map.put(leftc, map.get(leftc) + 1);
                        if (map.get(leftc) >= 1) {
                            //加一之后恢复到正常状态
                            count++;
                        }
                    }
                    //吧最左边右移一次
                    l++;
                }
                r++; //往后遍历
            }
    
            return pipeiok == true ? s.substring(minl, minr + 1) : "";
        }
    
        public static void main(String[] args) {
            String s[] = {"ADOBECODEBANC", "ABC"};
            String s1[] = {"aa", "aa"};
    
            MinWindow fuc = new MinWindow();
    
            fuc.solution(s1[0], s1[1]);
    
        }
    }
  • 相关阅读:
    Linux文件系统结构
    JAVA实现上传下载共享文件
    JAVA 实现通过URL下载文件到本地库
    使用SoapUI 测试 Web Service
    DB2存储过程实现查询表数据,生成动态SQL,并执行
    DB2查看表空间大小及使用情况
    Spring使用总结
    Commons-logging + Log4j
    JAVA生成EXCEL图表
    html5离线缓存原理
  • 原文地址:https://www.cnblogs.com/cutter-point/p/11316055.html
Copyright © 2011-2022 走看看