zoukankan      html  css  js  c++  java
  • Python知识(6)--numpy做矩阵运算

    矩阵运算

    论numpy中matrix 和 array的区别:http://blog.csdn.net/vincentlipan/article/details/20717163

    matrix 和 array的差别: Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

    1.基本运算

    import numpy as np
    
    a = np.array([[-1,2],[2,3]])
    b = np.array([[3,4],[4,5]])
    print '
     a:
    ',a
    print '
     b:
    ',b
    
    ##转置
    print '
     a transpose:
    ',a.T
    
    ##共扼矩阵
    #print '
     a H:
    ',a.I
    
    ##逆矩阵
    print '
     a inv:
    ',np.linalg.inv(a) # 求逆
    
    ##转置
    print '
     a transpose:
    ',a.T
    
    # a + b,矩阵相加
    print "
     a+b: 
    ",a+b
    
    # a - b,矩阵相减
    print "
     a-b: 
    ",a-b
    
    #2x2 矩阵,矩阵相乘
    print "
     a mul b:
    ",a.dot(b.T)
    
    #2x3矩阵,矩阵点乘
    print "
     a dot b: 
    ",a*b
    
    #2x3矩阵,矩阵点除
    print "
     a/b 
    :",a/np.linalg.inv(b)
    
    #求迹
    print "
     a trace",np.trace(a) 
    
    #特征,特征向量
    eigval,eigvec = np.linalg.eig(a) 
    #eigval = np.linalg.eigvals(a) #直接求解特征值
    
    print "
     a eig value:
    ",eigval,
    print'
     a eig vector:
    ',eigvec

    运算结果:

    a:
    [[-1  2]
     [ 2  3]]
    
     b:
    [[3 4]
     [4 5]]
    
     a transpose:
    [[-1  2]
     [ 2  3]]
    
     a inv:
    [[-0.42857143  0.28571429]
     [ 0.28571429  0.14285714]]
    
     a transpose:
    [[-1  2]
     [ 2  3]]
    
     a+b: 
    [[2 6]
     [6 8]]
    
     a-b: 
    [[-4 -2]
     [-2 -2]]
    
     a mul b:
    [[ 5  6]
     [18 23]]
    
     a dot b: 
    [[-3  8]
     [ 8 15]]
    
     a/b 
    : [[ 0.2  0.5]
     [ 0.5 -1. ]]
    
     a trace 2
    
     a eig value:
    [-1.82842712  3.82842712] 
     a eig vector:
    [[-0.92387953 -0.38268343]
     [ 0.38268343 -0.92387953]]

    2.特殊矩阵

    import numpy as np
    a = np.zeros([4,5]) # all zero
    print  '
    all zero 
    ',a
    a = np.ones([7,6]) # all one
    print  '
    all one 
    ',a
    a = np.eye(4,7) # 4x7 diagonal
    print  '
    4x7 diagonal 
    ',a
    a = np.diag(range(5)) # 5x5 diagonal
    print  '
    5x5 diagonal 
    ',a
    a = np.empty((2,3))
    print '
    empty 
    ',a
    
    a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D
    print '
     array([10, 15, 20, 25]), 1-D 
    ',a
    a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2
    print '
    9 numbers from 0 to 2 
    ',a
    a = np.random.random((2,3)) # random matrics
    print  '
    random matrics 
    ',a
    import numpy as np
    a = np.zeros([4,5]) # all zero
    print  '
    all zero 
    ',a
    a = np.ones([7,6]) # all one
    print  '
    all one 
    ',a
    a = np.eye(4,7) # 4x7 diagonal
    print  '
    4x7 diagonal 
    ',a
    a = np.diag(range(5)) # 5x5 diagonal
    print  '
    5x5 diagonal 
    ',a
    a = np.empty((2,3))
    print '
    empty 
    ',a
    ​
    a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D
    print '
     array([10, 15, 20, 25]), 1-D 
    ',a
    a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2
    print '
    9 numbers from 0 to 2 
    ',a
    a = np.random.random((2,3)) # random matrics
    print  '
    random matrics 
    ',a

    运算结果:

    all zero 
    [[ 0.  0.  0.  0.  0.]
     [ 0.  0.  0.  0.  0.]
     [ 0.  0.  0.  0.  0.]
     [ 0.  0.  0.  0.  0.]]
    
    all one 
    [[ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]
     [ 1.  1.  1.  1.  1.  1.]]
    
    4x7 diagonal 
    [[ 1.  0.  0.  0.  0.  0.  0.]
     [ 0.  1.  0.  0.  0.  0.  0.]
     [ 0.  0.  1.  0.  0.  0.  0.]
     [ 0.  0.  0.  1.  0.  0.  0.]]
    
    5x5 diagonal 
    [[0 0 0 0 0]
     [0 1 0 0 0]
     [0 0 2 0 0]
     [0 0 0 3 0]
     [0 0 0 0 4]]
    
    empty 
    [[ 0.06012241  0.30847312  0.20174074]
     [ 0.37654373  0.71036135  0.15586512]]
    
     array([10, 15, 20, 25]), 1-D 
    [10 15 20 25]
    
    9 numbers from 0 to 2 
    [ 0.    0.25  0.5   0.75  1.    1.25  1.5   1.75  2.  ]
    
    random matrics 
    [[ 0.44052293  0.42283564  0.44825331]
     [ 0.66735609  0.32664018  0.17015328]]
  • 相关阅读:
    将Vim改造为强大的IDE
    Ubuntu首次开启root用户
    ssh-keygen实现免密码登陆
    Ubuntu下配置samba服务器实现文件共享
    Ubuntu下Apache+php+mysql网站架设详解
    IIS支持PHP
    详解C/C++预处理器
    学C++之感悟
    return *this和return this的区别
    const 的全面总结
  • 原文地址:https://www.cnblogs.com/cv-pr/p/6395176.html
Copyright © 2011-2022 走看看