为了睡觉,我写简单点
反正就是个记录
梯度下降
快速梯度下降
"""
Numerical Computation & Optimization
homework1: gradient
cww97
Name: Chen WeiWen
stuID: 10152510217
2017/12/14
from cww970329@qq.com
to num_com_opt@163.com
"""
import numpy as np
N = 1000
def gradient(A, b):
x = np.mat(np.zeros([N, 1]))
#while np.linalg.norm(A*x-b) > 1e-2:
for cnt in range(3000):
gx = A * x - b
s = 5e-4 * sum(A[i].T * gx[i] for i in range(N))
x -= s
return x
def fast_gradient(A, b):
x = np.mat(np.zeros([N, 1]))
x_old, a_old, a = np.copy(x), 0, 1
for cnt in range(1000):
a_new = 0.5 + 0.5 * np.sqrt(1+4*a*a)
t = (a-1) / a_new
y_new = (1+t) * x - t * x_old
gy = A * y_new - b
s = 3e-4 * sum(A[i].T * gy[i] for i in range(N))
x_new = y_new - s
a_old, a, x_old, x = a, a_new, x, x_new
# make you dont feel boring when waiting
print(cnt, np.linalg.norm(A*x-b))
return x
if __name__ == '__main__':
A = np.mat(np.random.normal(size=(N, N)))
x = np.mat(np.ones([N, 1]))
b = A * x
print('A =
', A, '
x = ', x.T, '.T
b = ', b.T, '.T')
print('梯度下降:')
print(gradient(A, b).T)
print('快速梯度下降:')
print(fast_gradient(A, b).T)