题目大意:
思路:基尔霍夫矩阵求生成树个数,不会。
可是能够暴力打表。(我才不会说我调试force调试了20分钟。。。
CODE(force.cc):
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 1000 using namespace std; struct Edge{ int x,y; Edge(int _,int __):x(_),y(__) {} Edge() {} }edge[MAX]; int edges; int status; int father[MAX]; int Find(int x) { if(father[x] == x) return x; return father[x] = Find(father[x]); } inline bool Unite(int x,int y) { int fx = Find(x); int fy = Find(y); if(fx != fy) { father[fx] = fy; return true; } return false; } int main() { for(int i = 1; i <= 20; ++i) { edges = 0; for(int j = 1; j <= i; ++j) edge[++edges] = Edge(0,j); for(int j = 1; j < i; ++j) edge[++edges] = Edge(j,j + 1); edge[++edges] = Edge(i,1); int ans = 0; for(int j = 1; j <= (1 << edges); ++j) { int added = 0; for(int k = 0; k <= i; ++k) father[k] = k; for(int k = 0; k < edges; ++k) added += (j >> k)&1; if(added != i) continue; added = 0; for(int k = 0; k < edges; ++k) if((j >> k)&1) added += Unite(edge[k + 1].x,edge[k + 1].y); ans += (added == i); } cout << i << ':' << ans << endl; } return 0; }
打出的表是这种。。
后面的数太大了爆了。
。
非常明显能够看出奇数的数都是全然平方数。
把它们开跟,然后经过艰苦卓绝的分析之后,得到了一个递推式:
f[i] = f[i - 1] + Σf[j] + 2 (j∈[1,i - 1]),答案是f[n] ^ 2
有了这个结论,偶数的就好办了。能够看到,偶数的除以5之后也是全然平方数,和上面非常像,它的递推式是:
f[i] = f[i - 1] + Σf[j] + 1 (j∈[i,i - 1]),答案是f[n] ^ 2 * 5
至于为什么递推式长这样,谜。
CODE:
#include <cstdio> #include <iomanip> #include <cstring> #include <iostream> #include <algorithm> #define BASE 10000 #define MAX 1010 using namespace std; struct BigInt{ int num[MAX],len; BigInt(int _ = 0) { memset(num,0,sizeof(num)); len = _ ? 1:0; num[1] = _; } BigInt operator +(const BigInt &a)const { BigInt re; re.len = max(len,a.len); int temp = 0; for(int i = 1; i <= re.len; ++i) { re.num[i] = num[i] + a.num[i] + temp; temp = re.num[i] / BASE; re.num[i] %= BASE; } if(temp) re.num[++re.len] = temp; return re; } BigInt operator *(const BigInt &a)const { BigInt re; for(int i = 1; i <= len; ++i) for(int j = 1; j <= a.len; ++j) { re.num[i + j - 1] += num[i] * a.num[j]; re.num[i + j] += re.num[i + j - 1] / BASE; re.num[i + j - 1] %= BASE; } re.len = len + a.len; if(!re.num[re.len]) --re.len; return re; } }; ostream &operator <<(ostream &os,const BigInt &a) { os << a.num[a.len]; for(int i = a.len - 1; i; --i) os << fixed << setw(4) << setfill('0') << a.num[i]; return os; } int k; BigInt f[110],g[110]; int main() { cin >> k; if(k&1) { k = (k + 1) >> 1; f[1] = BigInt(1),f[2] = BigInt(4); g[1] = BigInt(1),g[2] = BigInt(5); for(int i = 3; i <= k; ++i) { f[i] = f[i - 1] + g[i - 1] + BigInt(2); g[i] = g[i - 1] + f[i]; } cout << f[k] * f[k] << endl; } else { k >>= 1; f[1] = BigInt(1),f[2] = BigInt(3); g[1] = BigInt(1),g[2] = BigInt(4); for(int i = 3; i <= k; ++i) { f[i] = f[i - 1] + g[i - 1] + BigInt(1); g[i] = g[i - 1] + f[i]; } cout << f[k] * f[k] * BigInt(5) << endl; } return 0; }