zoukankan      html  css  js  c++  java
  • tensorflow1--会话,变量,fetch and feed,线性回归示例

    import tensorflow as tf
    import numpy as np
    # 1-1 初识tensorflow会话
    ###########################
    #   with定义会话
    # a = tf.constant([[1,2]])
    # b = tf.constant([[3],[5]])
    # c = tf.multiply(a,b)
    # d = tf.matmul(a,b)
    # with tf.Session() as sess:
    #     a1 = sess.run(a)
    #     b1 = sess.run(b)
    #     d1 = sess.run(d)
    #     print(a1)
    #     print(b1)
    #     print(d1)
    #   常规定义会话
    # sess = tf.Session()
    # a1 = sess.run(a)
    # b1 = sess.run(b)
    # c1 = sess.run(c)
    # d1 = sess.run(d)
    # print(a1)
    # print(b1)
    # print(c1)
    # print(d1)
    # sess.close()
    
    # 2-2 变量 (必须初始化)
    ###########################
    # a = tf.Variable([1,2])
    # b = tf.constant([5,8])
    # c = tf.subtract(a,b)        #减法
    # d = tf.add(a,b)             #加法
    # #变量自加1,赋值
    # e = tf.Variable(5)
    # newe = tf.add(e,1)
    # update = tf.assign(e,newe)
    #
    # init = tf.global_variables_initializer()        #有变量必须初始化全局变量
    # with tf.Session() as sess:
    #     sess.run(init)
    #     # print(sess.run(a))
    #     # print(sess.run(b))
    #     e1 = sess.run(e)
    #     for i in range(5):
    #         sess.run(update)
    #         print(sess.run(e))
    
    # 2-3   Fetch and Feed
    ########################
    #   Fetch
    # a = tf.constant(1)
    # b = tf.constant(2)
    # c = tf.add(a,b)
    # d = tf.multiply(b,c)
    # with tf.Session() as sess:
    #     result = sess.run([d,c])
    #     print(result)
    
    #   Feed
    # a = tf.placeholder(tf.float32)
    # b = tf.placeholder(tf.float32)
    # output = tf.multiply(a,b)
    # with tf.Session() as sess:
    #     result = sess.run(output,feed_dict={a:25,b:5})
    #     print(result)
    
    # 2-4 简单实例
    ######################
    #模拟训练数据集
    x_data = np.random.rand(100)
    y_data = 5 * x_data + 3
    #训练参数
    k = tf.Variable(0.)
    b = tf.Variable(0.)
    y = k * x_data + b
    #代价函数
    loss = tf.reduce_mean(tf.square(y - y_data))
    #梯度下降
    optimizer = tf.train.GradientDescentOptimizer(0.3)
    #最小化代价函数
    train = optimizer.minimize(loss)
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for i in range(200):
            sess.run(train)
            if i % 20 == 0:
                print(i,sess.run([k,b]))

  • 相关阅读:
    Codeforces Round #277 (Div. 2) D. Valid Sets 暴力
    Codeforces Round #277 (Div. 2) B. OR in Matrix 贪心
    Codeforces Round #277 (Div. 2) A. Calculating Function 水题
    套题 Codeforces Round #277 (Div. 2)
    模板 读入挂
    Codeforces Round #276 (Div. 1) B. Maximum Value 筛倍数
    Codeforces Round #276 (Div. 1) A. Bits 二进制 贪心
    json转字符串 —— jsonObj.toJSONString()与JSON.stringify(jsonObj)
    JSONP跨域提交表单
    jquery ajaxSubmit
  • 原文地址:https://www.cnblogs.com/cxhzy/p/10862259.html
Copyright © 2011-2022 走看看