zoukankan      html  css  js  c++  java
  • Pytorch-自编码器与变分自编码器

    提前导包:

    1 import  torch
    2 from    torch import nn, optim
    3 from    torch.utils.data import DataLoader
    4 from    torchvision import transforms, datasets
    5 
    6 import  visdom

    1.自编码器(Auto-Encoder)

     1 class AE(nn.Module):
     2 
     3     def __init__(self):
     4         super(AE, self).__init__()
     5 
     6         # [b, 784] => [b, 20]
     7         self.encoder = nn.Sequential(
     8             nn.Linear(784, 256),
     9             nn.ReLU(),
    10             nn.Linear(256, 64),
    11             nn.ReLU(),
    12             nn.Linear(64, 20),
    13             nn.ReLU()
    14         )
    15         # [b, 20] => [b, 784]
    16         self.decoder = nn.Sequential(
    17             nn.Linear(20, 64),
    18             nn.ReLU(),
    19             nn.Linear(64, 256),
    20             nn.ReLU(),
    21             nn.Linear(256, 784),
    22             nn.Sigmoid()
    23         )
    24 
    25     def forward(self, x):                 #x.shape=[b, 1, 28, 28]
    26 
    27         batchsz = x.size(0)
    28         x = x.view(batchsz, 784)          #flatten     
    29         x = self.encoder(x)               #encoder [b, 20]      
    30         x = self.decoder(x)               #decoder [b, 784]       
    31         x = x.view(batchsz, 1, 28, 28)    #reshape [b, 1, 28, 28]
    32 
    33         return x, None

    2.变分自动编码器(Variational Auto-Encoder)

    代码中的h和图中的ci,计算方法略有不同,代码中没有用指数。

    KL散度计算公式(代码中与sigma相乘的torch.randn_like(sigma)符合正态分布):

     1 class VAE(nn.Module):
     2 
     3     def __init__(self):
     4         super(VAE, self).__init__()
     5 
     6         # [b, 784] => [b, 20]
     7         self.encoder = nn.Sequential(
     8             nn.Linear(784, 256),
     9             nn.ReLU(),
    10             nn.Linear(256, 64),
    11             nn.ReLU(),
    12             nn.Linear(64, 20),
    13             nn.ReLU()
    14         )
    15         # [b, 20] => [b, 784]
    16         self.decoder = nn.Sequential(
    17             nn.Linear(10, 64),
    18             nn.ReLU(),
    19             nn.Linear(64, 256),
    20             nn.ReLU(),
    21             nn.Linear(256, 784),
    22             nn.Sigmoid()
    23         )
    24 
    25         self.criteon = nn.MSELoss()
    26 
    27     def forward(self, x):              #x.shape=[b, 1, 28, 28]
    28        
    29         batchsz = x.size(0)
    30         x = x.view(batchsz, 784)                 #flatten
    31         
    32         h_ = self.encoder(x)                     #encoder  [b, 20], including mean and sigma
    33         mu, sigma = h_.chunk(2, dim=1)           #[b, 20] => mu[b, 10] and sigma[b, 10]
    34         h = mu + sigma * torch.randn_like(sigma) #reparametrize trick, epison~N(0, 1)
    35         x_hat = self.decoder(h)                  #decoder  [b, 784]
    36         x_hat = x_hat.view(batchsz, 1, 28, 28)   #reshape  [b, 1, 28, 28]
    37 
    38         kld = 0.5 * torch.sum(mu**2 + sigma**2 - torch.log(1e-8 + sigma**2) - 1) / (batchsz*28*28)   #KL散度计算
    39         
    40         return x_hat, kld

    3.MINIST数据集上分别调用上面的编码器

     1 def main():
     2     mnist_train = datasets.MNIST('mnist', train=True, transform=transforms.Compose([transforms.ToTensor()]), download=True)
     3     mnist_train = DataLoader(mnist_train, batch_size=32, shuffle=True)
     4 
     5     mnist_test = datasets.MNIST('mnist', train=False, transform=transforms.Compose([transforms.ToTensor()]), download=True)
     6     mnist_test = DataLoader(mnist_test, batch_size=32, shuffle=True)
     7 
     8     x, _ = iter(mnist_train).next()    #x: torch.Size([32, 1, 28, 28]) _: torch.Size([32])
     9 
    10     model = AE()
    11     # model = VAE()
    12     
    13     criteon = nn.MSELoss()             #均方损失
    14     optimizer = optim.Adam(model.parameters(), lr=1e-3)
    15     print(model)
    16 
    17     viz = visdom.Visdom()
    18 
    19     for epoch in range(20):
    20 
    21         for batchidx, (x, _) in enumerate(mnist_train):
    22             
    23             x_hat, kld = model(x)
    24             loss = criteon(x_hat, x)        #x_hat和x的shape=[b, 1, 28, 28]
    25 
    26             if kld is not None:
    27                 elbo = - loss - 1.0 * kld   #elbo为证据下界
    28                 loss = - elbo
    29             
    30             optimizer.zero_grad()
    31             loss.backward()
    32             optimizer.step()
    33 
    34         print(epoch, 'loss:', loss.item())
    35         # print(epoch, 'loss:', loss.item(), 'kld:', kld.item())
    36 
    37         x, _ = iter(mnist_test).next()
    38         
    39         with torch.no_grad():
    40             x_hat, kld = model(x)
    41         viz.images(x, nrow=8, win='x', opts=dict(title='x'))
    42         viz.images(x_hat, nrow=8, win='x_hat', opts=dict(title='x_hat'))
    43 
    44 
    45 if __name__ == '__main__':
    46     main()

    当调用AE时,

    0 loss: 0.02397083304822445
    1 loss: 0.024659520015120506
    2 loss: 0.020393237471580505
    3 loss: 0.01954815723001957
    4 loss: 0.01639191433787346
    5 loss: 0.01630600169301033
    6 loss: 0.017990168184041977
    7 loss: 0.01680954359471798
    8 loss: 0.015895305201411247
    9 loss: 0.01704774796962738
    10 loss: 0.013867242261767387
    11 loss: 0.015675727277994156
    12 loss: 0.015580415725708008
    13 loss: 0.015662500634789467
    14 loss: 0.014532235451042652
    15 loss: 0.01624385453760624
    16 loss: 0.014668326824903488
    17 loss: 0.015973586589097977
    18 loss: 0.0157624501734972
    19 loss: 0.01488522719591856

    当调用VAE时,

    0 loss: 0.06747999787330627 kld: 0.017223423346877098
    1 loss: 0.06267592310905457 kld: 0.01792667806148529
    2 loss: 0.06116900593042374 kld: 0.01845495030283928
    3 loss: 0.05097544193267822 kld: 0.0076100630685687065
    4 loss: 0.05512534826993942 kld: 0.008729029446840286
    5 loss: 0.04558167979121208 kld: 0.008567653596401215
    6 loss: 0.04628278315067291 kld: 0.008163649588823318
    7 loss: 0.05536432936787605 kld: 0.008285009302198887
    8 loss: 0.048810530453920364 kld: 0.009821291081607342
    9 loss: 0.046619318425655365 kld: 0.009058271534740925
    10 loss: 0.04698382318019867 kld: 0.009476056322455406
    11 loss: 0.048784226179122925 kld: 0.008850691840052605
    12 loss: 0.05204786732792854 kld: 0.008851360529661179
    13 loss: 0.04309754818677902 kld: 0.008809098042547703
    14 loss: 0.05094045773148537 kld: 0.008593044243752956
    15 loss: 0.04640775918960571 kld: 0.00919229444116354
    16 loss: 0.04617678374052048 kld: 0.009322990663349628
    17 loss: 0.044559232890605927 kld: 0.00912649929523468
    18 loss: 0.04573676362633705 kld: 0.009612892754375935
    19 loss: 0.040917910635471344 kld: 0.008869696408510208

  • 相关阅读:
    【Codeforces 475F】—Meta-universe(Set)
    【Codeforces 475F】—Meta-universe(Set)
    【UOJ #79】—一般图最大匹配(带花树)
    【UOJ #79】—一般图最大匹配(带花树)
    【NOIp2019模拟】题解
    【NOIp2019模拟】题解
    涉及到的业务逻辑总结
    2016-9-14
    Spring MVC
    2016-9-12
  • 原文地址:https://www.cnblogs.com/cxq1126/p/13532298.html
Copyright © 2011-2022 走看看