zoukankan      html  css  js  c++  java
  • 一个Linux下C线程池的实现(转)

    简单Linux C线程池

     

      大多数的网络服务器,包括Web服务器都具有一个特点,就是单位时间内必须处理数目巨大的连接请求,但是处理时间却是比较短的。在传统的多线程服务器模型中是这样实现的:一旦有个请求到达,就创建一个新的线程,由该线程执行任务,任务执行完毕之后,线程就退出。这就是"即时创建,即时销毁"的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数非常频繁,那么服务器就将处于一个不停的创建线程和销毁线程的状态。这笔开销是不可忽略的,尤其是线程执行的时间非常非常短的情况。

      线程池就是为了解决上述问题的,它的实现原理是这样的:在应用程序启动之后,就马上创建一定数量的线程,放入空闲的队列中。这些线程都是处于阻塞状态,这些线程只占一点内存,不占用CPU。当任务到来后,线程池将选择一个空闲的线程,将任务传入此线程中运行。当所有的线程都处在处理任务的时候,线程池将自动创建一定的数量的新线程,用于处理更多的任务。执行任务完成之后线程并不退出,而是继续在线程池中等待下一次任务。当大部分线程处于阻塞状态时,线程池将自动销毁一部分的线程,回收系统资源。

      下面是一个简单线程池的实现,这个线程池的代码是我参考网上的一个例子实现的,由于找不到出处了,就没办法注明参考自哪里了。它的方案是这样的:程序启动之前,初始化线程池,启动线程池中的线程,由于还没有任务到来,线程池中的所有线程都处在阻塞状态,当一有任务到达就从线程池中取出一个空闲线程处理,如果所有的线程都处于工作状态,就添加到队列,进行排队。如果队列中的任务个数大于队列的所能容纳的最大数量,那就不能添加任务到队列中,只能等待队列不满才能添加任务到队列中。

      主要由两个文件组成一个threadpool.h头文件和一个threadpool.c源文件组成。源码中已有重要的注释,就不加以分析了。

      threadpool.h文件:

    复制代码
    struct job
    {
        void* (*callback_function)(void *arg);    //线程回调函数
        void *arg;                                //回调函数参数
        struct job *next;
    };
    
    struct threadpool
    {
        int thread_num;                   //线程池中开启线程的个数
        int queue_max_num;                //队列中最大job的个数
        struct job *head;                 //指向job的头指针
        struct job *tail;                 //指向job的尾指针
        pthread_t *pthreads;              //线程池中所有线程的pthread_t
        pthread_mutex_t mutex;            //互斥信号量
        pthread_cond_t queue_empty;       //队列为空的条件变量
        pthread_cond_t queue_not_empty;   //队列不为空的条件变量
        pthread_cond_t queue_not_full;    //队列不为满的条件变量
        int queue_cur_num;                //队列当前的job个数
        int queue_close;                  //队列是否已经关闭
        int pool_close;                   //线程池是否已经关闭
    };
    
    //================================================================================================
    //函数名:                   threadpool_init
    //函数描述:                 初始化线程池
    //输入:                    [in] thread_num     线程池开启的线程个数
    //                         [in] queue_max_num  队列的最大job个数 
    //输出:                    无
    //返回:                    成功:线程池地址 失败:NULL
    //================================================================================================
    struct threadpool* threadpool_init(int thread_num, int queue_max_num);
    
    //================================================================================================
    //函数名:                    threadpool_add_job
    //函数描述:                  向线程池中添加任务
    //输入:                     [in] pool                  线程池地址
    //                          [in] callback_function     回调函数
    //                          [in] arg                     回调函数参数
    //输出:                     无
    //返回:                     成功:0 失败:-1
    //================================================================================================
    int threadpool_add_job(struct threadpool *pool, void* (*callback_function)(void *arg), void *arg);
    
    //================================================================================================
    //函数名:                    threadpool_destroy
    //函数描述:                   销毁线程池
    //输入:                      [in] pool                  线程池地址
    //输出:                      无
    //返回:                      成功:0 失败:-1
    //================================================================================================
    int threadpool_destroy(struct threadpool *pool);
    
    //================================================================================================
    //函数名:                    threadpool_function
    //函数描述:                  线程池中线程函数
    //输入:                     [in] arg                  线程池地址
    //输出:                     无  
    //返回:                     无
    //================================================================================================
    void* threadpool_function(void* arg);
    复制代码

      threadpool.c文件:

    复制代码
    #include "threadpool.h"
    
    struct threadpool* threadpool_init(int thread_num, int queue_max_num)
    {
        struct threadpool *pool = NULL;
        do 
        {
            pool = malloc(sizeof(struct threadpool));
            if (NULL == pool)
            {
                printf("failed to malloc threadpool!
    ");
                break;
            }
            pool->thread_num = thread_num;
            pool->queue_max_num = queue_max_num;
            pool->queue_cur_num = 0;
            pool->head = NULL;
            pool->tail = NULL;
            if (pthread_mutex_init(&(pool->mutex), NULL))
            {
                printf("failed to init mutex!
    ");
                break;
            }
            if (pthread_cond_init(&(pool->queue_empty), NULL))
            {
                printf("failed to init queue_empty!
    ");
                break;
            }
            if (pthread_cond_init(&(pool->queue_not_empty), NULL))
            {
                printf("failed to init queue_not_empty!
    ");
                break;
            }
            if (pthread_cond_init(&(pool->queue_not_full), NULL))
            {
                printf("failed to init queue_not_full!
    ");
                break;
            }
            pool->pthreads = malloc(sizeof(pthread_t) * thread_num);
            if (NULL == pool->pthreads)
            {
                printf("failed to malloc pthreads!
    ");
                break;
            }
            pool->queue_close = 0;
            pool->pool_close = 0;
            int i;
            for (i = 0; i < pool->thread_num; ++i)
            {
                pthread_create(&(pool->pthreads[i]), NULL, threadpool_function, (void *)pool);
            }
            
            return pool;    
        } while (0);
        
        return NULL;
    }
    
    int threadpool_add_job(struct threadpool* pool, void* (*callback_function)(void *arg), void *arg)
    {
        assert(pool != NULL);
        assert(callback_function != NULL);
        assert(arg != NULL);
    
        pthread_mutex_lock(&(pool->mutex));
        while ((pool->queue_cur_num == pool->queue_max_num) && !(pool->queue_close || pool->pool_close))
        {
            pthread_cond_wait(&(pool->queue_not_full), &(pool->mutex));   //队列满的时候就等待
        }
        if (pool->queue_close || pool->pool_close)    //队列关闭或者线程池关闭就退出
        {
            pthread_mutex_unlock(&(pool->mutex));
            return -1;
        }
        struct job *pjob =(struct job*) malloc(sizeof(struct job));
        if (NULL == pjob)
        {
            pthread_mutex_unlock(&(pool->mutex));
            return -1;
        } 
        pjob->callback_function = callback_function;    
        pjob->arg = arg;
        pjob->next = NULL;
        if (pool->head == NULL)   
        {
            pool->head = pool->tail = pjob;
            pthread_cond_broadcast(&(pool->queue_not_empty));  //队列空的时候,有任务来时就通知线程池中的线程:队列非空
        }
        else
        {
            pool->tail->next = pjob;
            pool->tail = pjob;    
        }
        pool->queue_cur_num++;
        pthread_mutex_unlock(&(pool->mutex));
        return 0;
    }
    
    void* threadpool_function(void* arg)
    {
        struct threadpool *pool = (struct threadpool*)arg;
        struct job *pjob = NULL;
        while (1)  //死循环
        {
            pthread_mutex_lock(&(pool->mutex));
            while ((pool->queue_cur_num == 0) && !pool->pool_close)   //队列为空时,就等待队列非空
            {
                pthread_cond_wait(&(pool->queue_not_empty), &(pool->mutex));
            }
            if (pool->pool_close)   //线程池关闭,线程就退出
            {
                pthread_mutex_unlock(&(pool->mutex));
                pthread_exit(NULL);
            }
            pool->queue_cur_num--;
            pjob = pool->head;
            if (pool->queue_cur_num == 0)
            {
                pool->head = pool->tail = NULL;
            }
            else 
            {
                pool->head = pjob->next;
            }
            if (pool->queue_cur_num == 0)
            {
                pthread_cond_signal(&(pool->queue_empty));        //队列为空,就可以通知threadpool_destroy函数,销毁线程函数
            }
            if (pool->queue_cur_num == pool->queue_max_num - 1)
            {
                pthread_cond_broadcast(&(pool->queue_not_full));  //队列非满,就可以通知threadpool_add_job函数,添加新任务
            }
            pthread_mutex_unlock(&(pool->mutex));
            
            (*(pjob->callback_function))(pjob->arg);   //线程真正要做的工作,回调函数的调用
            free(pjob);
            pjob = NULL;    
        }
    }
    int threadpool_destroy(struct threadpool *pool)
    {
        assert(pool != NULL);
        pthread_mutex_lock(&(pool->mutex));
        if (pool->queue_close || pool->pool_close)   //线程池已经退出了,就直接返回
        {
            pthread_mutex_unlock(&(pool->mutex));
            return -1;
        }
        
        pool->queue_close = 1;        //置队列关闭标志
        while (pool->queue_cur_num != 0)
        {
            pthread_cond_wait(&(pool->queue_empty), &(pool->mutex));  //等待队列为空
        }    
        
        pool->pool_close = 1;      //置线程池关闭标志
        pthread_mutex_unlock(&(pool->mutex));
        pthread_cond_broadcast(&(pool->queue_not_empty));  //唤醒线程池中正在阻塞的线程
        pthread_cond_broadcast(&(pool->queue_not_full));   //唤醒添加任务的threadpool_add_job函数
        int i;
        for (i = 0; i < pool->thread_num; ++i)
        {
            pthread_join(pool->pthreads[i], NULL);    //等待线程池的所有线程执行完毕
        }
        
        pthread_mutex_destroy(&(pool->mutex));          //清理资源
        pthread_cond_destroy(&(pool->queue_empty));
        pthread_cond_destroy(&(pool->queue_not_empty));   
        pthread_cond_destroy(&(pool->queue_not_full));    
        free(pool->pthreads);
        struct job *p;
        while (pool->head != NULL)
        {
            p = pool->head;
            pool->head = p->next;
            free(p);
        }
        free(pool);
        return 0;
    }
    复制代码

      测试文件main.c文件:

    复制代码
    #include "threadpool.h"
    
    void* work(void* arg)
    {
        char *p = (char*) arg;
        printf("threadpool callback fuction : %s.
    ", p);
        sleep(1);
    }
    
    int main(void)
    {
        struct threadpool *pool = threadpool_init(10, 20);
        threadpool_add_job(pool, work, "1");
        threadpool_add_job(pool, work, "2");
        threadpool_add_job(pool, work, "3");
        threadpool_add_job(pool, work, "4");
        threadpool_add_job(pool, work, "5");
        threadpool_add_job(pool, work, "6");
        threadpool_add_job(pool, work, "7");
        threadpool_add_job(pool, work, "8");
        threadpool_add_job(pool, work, "9");
        threadpool_add_job(pool, work, "10");
        threadpool_add_job(pool, work, "11");
        threadpool_add_job(pool, work, "12");
        threadpool_add_job(pool, work, "13");
        threadpool_add_job(pool, work, "14");
        threadpool_add_job(pool, work, "15");
        threadpool_add_job(pool, work, "16");
        threadpool_add_job(pool, work, "17");
        threadpool_add_job(pool, work, "18");
        threadpool_add_job(pool, work, "19");
        threadpool_add_job(pool, work, "20");
        threadpool_add_job(pool, work, "21");
        threadpool_add_job(pool, work, "22");
        threadpool_add_job(pool, work, "23");
        threadpool_add_job(pool, work, "24");
        threadpool_add_job(pool, work, "25");
        threadpool_add_job(pool, work, "26");
        threadpool_add_job(pool, work, "27");
        threadpool_add_job(pool, work, "28");
        threadpool_add_job(pool, work, "29");
        threadpool_add_job(pool, work, "30");
        threadpool_add_job(pool, work, "31");
        threadpool_add_job(pool, work, "32");
        threadpool_add_job(pool, work, "33");
        threadpool_add_job(pool, work, "34");
        threadpool_add_job(pool, work, "35");
        threadpool_add_job(pool, work, "36");
        threadpool_add_job(pool, work, "37");
        threadpool_add_job(pool, work, "38");
        threadpool_add_job(pool, work, "39");
        threadpool_add_job(pool, work, "40");
    
        sleep(5);
        threadpool_destroy(pool);
        return 0;
    }
    复制代码

      用gcc编译,运行就可以看到效果,1到40个回调函数分别被执行

  • 相关阅读:
    Codeforces Round #694 (Div.1, Div.2)题解(2A-1D)(1E-1F待填)
    【Luogu日报#294】OI中你可能会用到的一些不等式及其证明 | 习题题解
    SP10570 LONGCS
    Unity 数字孪生笔记 工具介绍
    Unity3D 最佳数字孪生插件(一个基于Unity的自动化概念设计,仿真,虚拟调试和3D HMI的框架)
    Unity 数字孪生笔记 PiXYZ快速入门
    数据结构:堆排序
    HDU 4704 Sum (欧拉降幂+二项式公式+快速幂)
    Codeforces Goodbye2020部分题解
    Apache架构师的30条设计原则
  • 原文地址:https://www.cnblogs.com/cxt-janson/p/5443250.html
Copyright © 2011-2022 走看看