题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=2243
题目大意:字母表为a~z,给n=5个词根,问长度不超过L=2^32的单词(不要问为什么有这么长的单词,就是有这么长)至少包含一个词根有多少个?
把长度为不超过L的单词数和加起来,再减去一个词根都不包含的数量。一个词根都不包含的数量的求法跟上题相同。
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <cctype> #include <vector> #include <bitset> #include <stack> #include <queue> #include <map> #include <algorithm> #include <iostream> #include <string> #include <set> #define X first #define Y second #define sqr(x) (x)*(x) #pragma comment(linker,"/STACK:102400000,102400000") using namespace std; const double PI = acos(-1.0); map<int, int>::iterator it; typedef long long LL ; typedef unsigned long long uLL; template<typename T> void checkmin(T &x, T y) {x = min(x, y);} template<typename T> void checkmax(T &x, T y) {x = max(x, y);} const int MAX_NODE = 26; const int CHILD_NUM = 26; class Matrix { public: uLL d[MAX_NODE][MAX_NODE]; int m; Matrix() {} Matrix(int _m): m(_m) {}; void Set_Zero() { memset(d, 0, sizeof(d)); } void Set_One() { Set_Zero(); for(int i = 0; i < m; ++i)d[i][i] = 1; } Matrix operator +(Matrix a) { Matrix ret(m); for(int i = 0; i < m; ++i)for(int j = 0; j < m; ++j)ret.d[i][j] = d[i][j] + a.d[i][j]; return ret; } Matrix operator *(Matrix a) { Matrix ret(m); ret.Set_Zero(); for(int i = 0; i < m; ++i) { for(int k = 0; k < m; ++k) { if(d[i][k] == 0)continue; for(int j = 0; j < m; ++j) { ret.d[i][j] += d[i][k] * a.d[k][j]; } } } return ret; } Matrix Power(LL n) { Matrix a(m), b(m); a = *this; b.Set_One(); while(n) { if(n & 1)b = b * a; a = a * a; n >>= 1; } return b; } Matrix Get_Psum(LL n) { Matrix ret; if(n == 1)return *this; if(n & 1) { ret = Get_Psum(n / 2); ret = ret + ret * Power(n / 2) + Power(n); } else { ret = Get_Psum(n / 2); ret = ret + ret * Power(n / 2); } return ret; } void pf() { for(int i = 0; i < m; ++i) { for(int j = 0; j < m; ++j) { printf("%3d", d[i][j]); } puts(""); } } }; class ACAutomaton { public: int chd[MAX_NODE][CHILD_NUM]; int val[MAX_NODE]; int ID[126]; int Q[MAX_NODE]; int fail[MAX_NODE]; int sz; void Initialize() { fail[0] = 0; for(int i = 0; i < 26; ++i) { ID['a'+i] = i; } } void Reset() { sz = 1; memset(chd[0], -1, sizeof(chd[0])); } void Insert(char *s) { int q = 0; for(; *s; ++s) { int c = ID[*s]; if(chd[q][c] == -1) { memset(chd[sz], -1, sizeof(chd[sz])); val[sz] = 0; chd[q][c] = sz++; } q = chd[q][c]; } val[q] = 1; } void Construct() { int *s = Q, *e = Q; for(int i = 0; i < CHILD_NUM; ++i) { if(~chd[0][i]) { fail[ chd[0][i] ] = 0; *s++ = chd[0][i]; } else chd[0][i] = 0; } while(s != e) { int r = *e++; for(int i = 0; i < CHILD_NUM; ++i) { int &u = chd[r][i]; int v = fail[r]; if(~u) { *s++ = u; fail[u] = chd[v][i]; val[u] |= val[ fail[u] ]; } else u = chd[v][i]; } } } Matrix Get_Matrix() { Matrix ret(sz); ret.Set_Zero(); for(int i = 0; i < sz; ++i) { if(val[i])continue; for(int j = 0; j < CHILD_NUM; ++j) { if(val[ chd[i][j] ])continue; ++ret.d[i][ chd[i][j] ]; } } return ret; } } AC; const uLL K = 26; uLL Power(uLL x, LL n) { uLL a = x, b = 1; while(n) { if(n & 1)b *= a; a *= a; n >>= 1; } return b; } uLL Get_PS(LL n) { //cout<<n<<endl; if(n == 1)return K; uLL ret, a, b; if(n & 1) { ret = Get_PS(n / 2); ret = ret + ret * Power(K, n / 2) + Power(K, n); } else { ret = Get_PS(n / 2); ret = ret + ret * Power(K, n / 2); } return ret; } char s[7]; int main() { int n; uLL L; AC.Initialize(); while(~scanf("%d%I64u", &n, &L)) { uLL sum = 0; uLL e = 1; AC.Reset(); sum = Get_PS(L); //printf("%I64u ",sum); for(uLL i = 0; i < n; ++i) { scanf("%s", s); AC.Insert(s); } AC.Construct(); Matrix a = AC.Get_Matrix(); //a.pf(); Matrix b = a.Get_Psum(L) ; uLL res = 0; for(int j = 0; j < b.m; ++j) { res += b.d[0][j]; } res = sum - res; printf("%I64u ", res); } return 0; }