zoukankan      html  css  js  c++  java
  • 彩色直方图均衡化(源码实现)

    原理:计算每个通道像素级别(0-255)的累加概率,然后用累加概率乘以255代替原来的像素

    import cv2
    import numpy as np
    img = cv2.imread('D:/pythonob/imageinpaint/img/flower.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('src',img)
    count_b = np.zeros(256,np.float)
    count_g = np.zeros(256,np.float)
    count_r = np.zeros(256,np.float)
    for i in range(0,height):
    for j in range(0,width):
    (b,g,r) = img[i,j]
    index_b = int(b)
    index_g = int(g)
    index_r = int(r)
    count_b[index_b] = count_b[index_b]+1
    count_g[index_g] = count_g[index_g] + 1
    count_r[index_r] = count_r[index_r] + 1
    for i in range(0,256):
    count_b[i] = count_b[i] / (height * width)
    count_g[i] = count_g[i] / (height * width)
    count_r[i] = count_r[i] / (height * width)
    #计算累计概率
    sum_b = float(0)
    sum_g = float(0)
    sum_r = float(0)
    for i in range(0,256):
    sum_b = sum_b + count_b[i]
    sum_g = sum_g + count_g[i]
    sum_r = sum_r + count_r[i]
    count_b[i] = sum_b
    count_g[i] = sum_g
    count_r[i] = sum_r
    #计算映射表
    map_b = np.zeros(256,np.uint16)
    map_g = np.zeros(256,np.uint16)
    map_r = np.zeros(256,np.uint16)
    for i in range(0,256):
    map_b[i] = count_b[i] * 255
    map_g[i] = count_g[i] * 255
    map_r[i] = count_r[i] * 255
    for i in range(0,height):
    for j in range(0,width):
    (b,g,r) = img[i,j]
    b = map_b[b]
    g = map_b[g]
    r = map_b[r]
    img[i,j] = (b,g,r)
    cv2.imshow('aftergImg',img)
    cv2.waitKey(0)

    效果图:

  • 相关阅读:
    自己的思考
    spring MVC整合freemarker
    手把手教你搭建SpringMVC——最小化配置
    深入hibernate的三种状态
    maven 构建slf4j1.7.7之简单测试与源码解析
    maven 构建slf4j1.7.7之简单测试与源码解析
    (转)URI和URL的区别
    Spring缓存机制的理解
    (转)oracle 高水位线详解
    (转)PL/SQL Developer使用技巧、快捷键
  • 原文地址:https://www.cnblogs.com/cxxBoo/p/11480940.html
Copyright © 2011-2022 走看看