zoukankan      html  css  js  c++  java
  • Mixtures of Gaussians and the EM algorithms

    Acknowledgement to Stanford CS229.

    Generative modeling is itself a kind of unsupervised learning task[1]. Given unlabelled data, 

    To estimate the parameters, we can write the likelihood as 

    which is also

    The EM algorithm can solve this pdf estimation iteratively.

    An example is provided here. The data points are drawn from 2 gaussian distributions. 

     1 import numpy as np
     2 import operator
     3 np.random.seed(0)
     4 x0=np.random.normal(0,1,50)
     5 x0=np.concatenate((x0,np.random.normal(2,1,50)),
     6                  axis=0)
     7 
     8 mus0=np.array([
     9     0,1
    10 ])
    11 sigmas0=np.array([
    12     2,2
    13 ])
    14 def gauss(x,mu,sigma):
    15     """
    16 
    17     :param x:
    18     :param mu:
    19     :param sigma:
    20     :return: pdf(x)
    21     """
    22     # if np.abs((x-mu)/sigma)<1e-5:
    23     #     return
    24     # numerator=np.exp(
    25     #     -(x-mu)**2/(2*sigma**2)
    26     # )
    27     numerator=np.exp(
    28         -0.5*((x-mu)/sigma)**2
    29     )
    30     denominator=np.sqrt(2*np.pi*sigma**2)
    31     return numerator/denominator
    32 def e_step(mus=mus0,sigmas=sigmas0,x=x0,priors=np.ones(len(mus0))/len(mus0)):
    33     """
    34 
    35     :param mus: gaussian centers, an array of shape (m,)
    36     :param sigmas: gaussian standard deviations, an array of shape (m,)
    37     :param x: n samples with no labels
    38     :return: m by n array, where m is # classes
    39     """
    40     assert len(mus)==len(sigmas),"mus and sigmas doesn't have the same length"
    41     m=len(mus)
    42     n=len(x)
    43     w=np.zeros(shape=(m,n))
    44     for j in range(m):
    45         for i in range(n):
    46             w[j][i]=gauss(x=x[i],mu=mus[j],sigma=sigmas[j])*priors[j]
    47     w_sum_wrt_j=np.sum(w,axis=0)#note j is the row index
    48     for j in range(m):
    49         w[j,:]=w[j,:]/w_sum_wrt_j
    50     return w
    51 def m_step(w,current_mus,x=x0):
    52     """
    53 
    54     :param w: m by n array, where m is # classes
    55     :return: mus: gaussian centers, an array of shape (m,)
    56              sigmas: gaussian standard deviations, an array of shape (m,)
    57     """
    58     m,n=w.shape
    59     mus=np.zeros(shape=(m))
    60     sigmas=np.zeros(shape=(m))
    61     for j in range(m):
    62         mus[j]=np.dot(
    63             w[j,:],x
    64         )
    65     mus/=np.sum(w,axis=1)
    66     for j in range(m):
    67         sigmas[j]=np.sqrt(np.dot(
    68             w[j, :], (x-current_mus[j])**2
    69         ))
    70     sigmas/=np.sqrt(np.sum(w,axis=1))
    71 
    72     priors=np.zeros(shape=(len(mus)))
    73     for i in range(n):
    74         tmp=list(map(
    75             gauss,[x[i]]*m,mus,sigmas
    76         ))
    77         tmpmaxindex,tmpmax=max(
    78             enumerate(tmp),key=operator.itemgetter(1)
    79         )
    80         # print(tmp)
    81         # print(tmpmaxindex)
    82         priors[tmpmaxindex]+=1/n
    83     return mus,sigmas,priors
    84 def solve(x=x0,priors=np.ones(len(mus0))/len(mus0)):
    85     # print("priors={}".format(priors))
    86     mus=mus0
    87     sigmas=sigmas0
    88     for k in range(500):
    89         w=e_step(mus=mus,sigmas=sigmas,x=x,priors=priors)
    90         mus,sigmas,priors=m_step(w,current_mus=mus,x=x0)
    91         print("k={},mus={},sigmas={},priors={}".format(k,mus,sigmas,priors))
    92 
    93 if __name__ == '__main__':
    94     solve()

    After 100 iterations, we get an approximation of the real model.

      1 /usr/local/bin/python3.5 /home/csdl/review/fulcrum/gmm/gmm.py
      2 k=0,mus=[ 0.81734343  1.27122747],sigmas=[ 1.60216343  1.33905931],priors=[ 0.32  0.68]
      3 k=1,mus=[ 0.73393663  1.21263431],sigmas=[ 1.48989073  1.27140643],priors=[ 0.35  0.65]
      4 k=2,mus=[ 0.72025041  1.24207148],sigmas=[ 1.47760392  1.25840835],priors=[ 0.36  0.64]
      5 k=3,mus=[ 0.69405554  1.2656654 ],sigmas=[ 1.47453155  1.2480128 ],priors=[ 0.36  0.64]
      6 k=4,mus=[ 0.65993336  1.28545741],sigmas=[ 1.47454151  1.238417  ],priors=[ 0.36  0.64]
      7 k=5,mus=[ 0.62512005  1.30527053],sigmas=[ 1.4739642   1.22830782],priors=[ 0.36  0.64]
      8 k=6,mus=[ 0.59009448  1.32522573],sigmas=[ 1.47230468  1.21788024],priors=[ 0.36  0.64]
      9 k=7,mus=[ 0.55504913  1.34523959],sigmas=[ 1.46932309  1.20732602],priors=[ 0.36  0.64]
     10 k=8,mus=[ 0.52016003  1.36521637],sigmas=[ 1.46489424  1.19678812],priors=[ 0.36  0.64]
     11 k=9,mus=[ 0.4855794   1.38507002],sigmas=[ 1.45897578  1.18636451],priors=[ 0.36  0.64]
     12 k=10,mus=[ 0.45142496  1.4047313 ],sigmas=[ 1.45158393  1.17611449],priors=[ 0.36  0.64]
     13 k=11,mus=[ 0.41777707  1.42414967],sigmas=[ 1.44277296  1.16606539],priors=[ 0.36  0.64]
     14 k=12,mus=[ 0.38468177  1.44329208],sigmas=[ 1.43261873  1.15621962],priors=[ 0.37  0.63]
     15 k=13,mus=[ 0.36595587  1.46867892],sigmas=[ 1.41990091  1.14409883],priors=[ 0.37  0.63]
     16 k=14,mus=[ 0.33654056  1.48870368],sigmas=[ 1.4082571   1.13343039],priors=[ 0.37  0.63]
     17 k=15,mus=[ 0.30597566  1.50763142],sigmas=[ 1.39543174  1.12335036],priors=[ 0.37  0.63]
     18 k=16,mus=[ 0.27568252  1.52609593],sigmas=[ 1.38137316  1.11360905],priors=[ 0.37  0.63]
     19 k=17,mus=[ 0.24588996  1.54419117],sigmas=[ 1.36625212  1.10407072],priors=[ 0.37  0.63]
     20 k=18,mus=[ 0.21664299  1.56192385],sigmas=[ 1.35022455  1.09464684],priors=[ 0.37  0.63]
     21 k=19,mus=[ 0.18796432  1.57928065],sigmas=[ 1.33342219  1.0852798 ],priors=[ 0.37  0.63]
     22 k=20,mus=[ 0.1598861   1.59623644],sigmas=[ 1.31596643  1.07593506],priors=[ 0.37  0.63]
     23 k=21,mus=[ 0.13245872  1.61275414],sigmas=[ 1.2979812   1.06659735],priors=[ 0.39  0.61]
     24 k=22,mus=[ 0.13549936  1.64420575],sigmas=[ 1.28163006  1.05238461],priors=[ 0.4  0.6]
     25 k=23,mus=[ 0.13362832  1.67212388],sigmas=[ 1.26763647  1.03761078],priors=[ 0.4  0.6]
     26 k=24,mus=[ 0.11750175  1.69125511],sigmas=[ 1.25330002  1.02525138],priors=[ 0.41  0.59]
     27 k=25,mus=[ 0.11224826  1.71494289],sigmas=[ 1.23950504  1.01230038],priors=[ 0.42  0.58]
     28 k=26,mus=[ 0.11153847  1.7395662 ],sigmas=[ 1.22728752  0.99889453],priors=[ 0.42  0.58]
     29 k=27,mus=[ 0.0999276   1.75644918],sigmas=[ 1.21474604  0.98770556],priors=[ 0.43  0.57]
     30 k=28,mus=[ 0.09911993  1.77770261],sigmas=[ 1.20375615  0.97601043],priors=[ 0.43  0.57]
     31 k=29,mus=[ 0.08991339  1.79234269],sigmas=[ 1.19274093  0.96620904],priors=[ 0.43  0.57]
     32 k=30,mus=[ 0.07854133  1.80401995],sigmas=[ 1.18163507  0.95803992],priors=[ 0.43  0.57]
     33 k=31,mus=[ 0.06708472  1.81391145],sigmas=[ 1.1708709  0.9510143],priors=[ 0.43  0.57]
     34 k=32,mus=[ 0.05629168  1.82248392],sigmas=[ 1.16077864  0.94483468],priors=[ 0.43  0.57]
     35 k=33,mus=[ 0.04644144  1.8299628 ],sigmas=[ 1.15153082  0.93934709],priors=[ 0.43  0.57]
     36 k=34,mus=[ 0.03761987  1.83648519],sigmas=[ 1.14319449  0.93447086],priors=[ 0.43  0.57]
     37 k=35,mus=[ 0.02982246  1.84215374],sigmas=[ 1.13577403  0.93015559],priors=[ 0.43  0.57]
     38 k=36,mus=[ 0.02299928  1.84705693],sigmas=[ 1.12923679  0.92636035],priors=[ 0.43  0.57]
     39 k=37,mus=[ 0.01707735  1.85127645],sigmas=[ 1.12352817  0.92304533],priors=[ 0.43  0.57]
     40 k=38,mus=[ 0.01197298  1.85488949],sigmas=[ 1.11858109  0.92016939],priors=[ 0.43  0.57]
     41 k=39,mus=[ 0.00759925  1.85796875],sigmas=[ 1.11432244  0.91769023],priors=[ 0.43  0.57]
     42 k=40,mus=[ 0.00387068  1.86058202],sigmas=[ 1.11067765  0.91556544],priors=[ 0.43  0.57]
     43 k=41,mus=[  7.06082311e-04   1.86279150e+00],sigmas=[ 1.10757393  0.91375369],priors=[ 0.43  0.57]
     44 k=42,mus=[-0.00196965  1.86465346],sigmas=[ 1.10494246  0.91221583],priors=[ 0.43  0.57]
     45 k=43,mus=[-0.00422464  1.86621814],sigmas=[ 1.10271971  0.91091554],priors=[ 0.43  0.57]
     46 k=44,mus=[-0.00611974  1.86752982],sigmas=[ 1.10084819  0.9098198 ],priors=[ 0.43  0.57]
     47 k=45,mus=[-0.00770859  1.86862714],sigmas=[ 1.09927671  0.90889909],priors=[ 0.43  0.57]
     48 k=46,mus=[-0.00903796  1.86954354],sigmas=[ 1.09796019  0.90812732],priors=[ 0.43  0.57]
     49 k=47,mus=[-0.01014832  1.87030773],sigmas=[ 1.09685943  0.90748172],priors=[ 0.43  0.57]
     50 k=48,mus=[-0.01107441  1.87094421],sigmas=[ 1.09594057  0.90694261],priors=[ 0.43  0.57]
     51 k=49,mus=[-0.01184586  1.87147378],sigmas=[ 1.09517461  0.90649307],priors=[ 0.43  0.57]
     52 k=50,mus=[-0.01248783  1.87191401],sigmas=[ 1.09453685  0.90611867],priors=[ 0.43  0.57]
     53 k=51,mus=[-0.01302159  1.87227973],sigmas=[ 1.09400634  0.90580718],priors=[ 0.43  0.57]
     54 k=52,mus=[-0.01346505  1.87258336],sigmas=[ 1.09356541  0.90554823],priors=[ 0.43  0.57]
     55 k=53,mus=[-0.01383328  1.87283531],sigmas=[ 1.09319917  0.90533313],priors=[ 0.43  0.57]
     56 k=54,mus=[-0.01413888  1.87304431],sigmas=[ 1.09289515  0.90515454],priors=[ 0.43  0.57]
     57 k=55,mus=[-0.0143924   1.87321761],sigmas=[ 1.09264288  0.90500635],priors=[ 0.43  0.57]
     58 k=56,mus=[-0.01460264  1.87336127],sigmas=[ 1.09243365  0.90488343],priors=[ 0.43  0.57]
     59 k=57,mus=[-0.01477693  1.87348033],sigmas=[ 1.09226016  0.9047815 ],priors=[ 0.43  0.57]
     60 k=58,mus=[-0.01492139  1.87357899],sigmas=[ 1.09211635  0.90469701],priors=[ 0.43  0.57]
     61 k=59,mus=[-0.0150411   1.87366073],sigmas=[ 1.09199717  0.90462698],priors=[ 0.43  0.57]
     62 k=60,mus=[-0.01514028  1.87372844],sigmas=[ 1.09189842  0.90456896],priors=[ 0.43  0.57]
     63 k=61,mus=[-0.01522245  1.87378452],sigmas=[ 1.09181661  0.90452088],priors=[ 0.43  0.57]
     64 k=62,mus=[-0.01529051  1.87383097],sigmas=[ 1.09174884  0.90448106],priors=[ 0.43  0.57]
     65 k=63,mus=[-0.01534687  1.87386944],sigmas=[ 1.0916927   0.90444807],priors=[ 0.43  0.57]
     66 k=64,mus=[-0.01539356  1.87390129],sigmas=[ 1.09164621  0.90442075],priors=[ 0.43  0.57]
     67 k=65,mus=[-0.01543222  1.87392767],sigmas=[ 1.09160771  0.90439813],priors=[ 0.43  0.57]
     68 k=66,mus=[-0.01546423  1.87394951],sigmas=[ 1.09157583  0.90437939],priors=[ 0.43  0.57]
     69 k=67,mus=[-0.01549074  1.87396759],sigmas=[ 1.09154943  0.90436388],priors=[ 0.43  0.57]
     70 k=68,mus=[-0.01551269  1.87398257],sigmas=[ 1.09152757  0.90435103],priors=[ 0.43  0.57]
     71 k=69,mus=[-0.01553086  1.87399496],sigmas=[ 1.09150947  0.9043404 ],priors=[ 0.43  0.57]
     72 k=70,mus=[-0.0155459   1.87400523],sigmas=[ 1.09149449  0.90433159],priors=[ 0.43  0.57]
     73 k=71,mus=[-0.01555836  1.87401373],sigmas=[ 1.09148208  0.9043243 ],priors=[ 0.43  0.57]
     74 k=72,mus=[-0.01556868  1.87402076],sigmas=[ 1.09147181  0.90431826],priors=[ 0.43  0.57]
     75 k=73,mus=[-0.01557722  1.87402659],sigmas=[ 1.0914633   0.90431327],priors=[ 0.43  0.57]
     76 k=74,mus=[-0.01558428  1.87403141],sigmas=[ 1.09145626  0.90430913],priors=[ 0.43  0.57]
     77 k=75,mus=[-0.01559014  1.8740354 ],sigmas=[ 1.09145043  0.9043057 ],priors=[ 0.43  0.57]
     78 k=76,mus=[-0.01559498  1.87403871],sigmas=[ 1.09144561  0.90430287],priors=[ 0.43  0.57]
     79 k=77,mus=[-0.01559899  1.87404144],sigmas=[ 1.09144161  0.90430052],priors=[ 0.43  0.57]
     80 k=78,mus=[-0.01560232  1.87404371],sigmas=[ 1.0914383   0.90429857],priors=[ 0.43  0.57]
     81 k=79,mus=[-0.01560506  1.87404558],sigmas=[ 1.09143556  0.90429696],priors=[ 0.43  0.57]
     82 k=80,mus=[-0.01560734  1.87404714],sigmas=[ 1.0914333   0.90429563],priors=[ 0.43  0.57]
     83 k=81,mus=[-0.01560923  1.87404842],sigmas=[ 1.09143142  0.90429453],priors=[ 0.43  0.57]
     84 k=82,mus=[-0.01561079  1.87404948],sigmas=[ 1.09142987  0.90429362],priors=[ 0.43  0.57]
     85 k=83,mus=[-0.01561208  1.87405037],sigmas=[ 1.09142858  0.90429286],priors=[ 0.43  0.57]
     86 k=84,mus=[-0.01561315  1.8740511 ],sigmas=[ 1.09142751  0.90429223],priors=[ 0.43  0.57]
     87 k=85,mus=[-0.01561403  1.8740517 ],sigmas=[ 1.09142663  0.90429172],priors=[ 0.43  0.57]
     88 k=86,mus=[-0.01561476  1.8740522 ],sigmas=[ 1.0914259   0.90429129],priors=[ 0.43  0.57]
     89 k=87,mus=[-0.01561537  1.87405261],sigmas=[ 1.0914253   0.90429093],priors=[ 0.43  0.57]
     90 k=88,mus=[-0.01561587  1.87405295],sigmas=[ 1.0914248   0.90429064],priors=[ 0.43  0.57]
     91 k=89,mus=[-0.01561629  1.87405324],sigmas=[ 1.09142438  0.90429039],priors=[ 0.43  0.57]
     92 k=90,mus=[-0.01561663  1.87405347],sigmas=[ 1.09142404  0.90429019],priors=[ 0.43  0.57]
     93 k=91,mus=[-0.01561692  1.87405367],sigmas=[ 1.09142376  0.90429003],priors=[ 0.43  0.57]
     94 k=92,mus=[-0.01561715  1.87405383],sigmas=[ 1.09142352  0.90428989],priors=[ 0.43  0.57]
     95 k=93,mus=[-0.01561735  1.87405396],sigmas=[ 1.09142333  0.90428977],priors=[ 0.43  0.57]
     96 k=94,mus=[-0.01561751  1.87405407],sigmas=[ 1.09142317  0.90428968],priors=[ 0.43  0.57]
     97 k=95,mus=[-0.01561764  1.87405416],sigmas=[ 1.09142303  0.9042896 ],priors=[ 0.43  0.57]
     98 k=96,mus=[-0.01561775  1.87405424],sigmas=[ 1.09142292  0.90428954],priors=[ 0.43  0.57]
     99 k=97,mus=[-0.01561785  1.8740543 ],sigmas=[ 1.09142283  0.90428948],priors=[ 0.43  0.57]
    100 k=98,mus=[-0.01561792  1.87405435],sigmas=[ 1.09142276  0.90428944],priors=[ 0.43  0.57]
    101 k=99,mus=[-0.01561799  1.8740544 ],sigmas=[ 1.09142269  0.9042894 ],priors=[ 0.43  0.57]
    102 
    103 Process finished with exit code 0

      In addition, a scikit-learn example can be found at http://scikit-learn.org/stable/modules/mixture.html

    [1] Ian Goodfellow. https://www.quora.com/Why-could-generative-models-help-with-unsupervised-learning/answer/Ian-Goodfellow?srid=hTUVm

  • 相关阅读:
    ajax参考增删改查
    linux 断网 扫描基本命令
    linux 基本命令大全
    开发者用的linux系统推荐
    python DRF获取参数介绍
    python DRF操作流程
    python 异常处理函数--raise
    DRF-Rest_Framework 学习文档
    前端框架VUE
    python Django rest-framework 创建序列化工程步骤
  • 原文地址:https://www.cnblogs.com/cxxszz/p/8313163.html
Copyright © 2011-2022 走看看