zoukankan      html  css  js  c++  java
  • Mixtures of Gaussians and the EM algorithms

    Acknowledgement to Stanford CS229.

    Generative modeling is itself a kind of unsupervised learning task[1]. Given unlabelled data, 

    To estimate the parameters, we can write the likelihood as 

    which is also

    The EM algorithm can solve this pdf estimation iteratively.

    An example is provided here. The data points are drawn from 2 gaussian distributions. 

     1 import numpy as np
     2 import operator
     3 np.random.seed(0)
     4 x0=np.random.normal(0,1,50)
     5 x0=np.concatenate((x0,np.random.normal(2,1,50)),
     6                  axis=0)
     7 
     8 mus0=np.array([
     9     0,1
    10 ])
    11 sigmas0=np.array([
    12     2,2
    13 ])
    14 def gauss(x,mu,sigma):
    15     """
    16 
    17     :param x:
    18     :param mu:
    19     :param sigma:
    20     :return: pdf(x)
    21     """
    22     # if np.abs((x-mu)/sigma)<1e-5:
    23     #     return
    24     # numerator=np.exp(
    25     #     -(x-mu)**2/(2*sigma**2)
    26     # )
    27     numerator=np.exp(
    28         -0.5*((x-mu)/sigma)**2
    29     )
    30     denominator=np.sqrt(2*np.pi*sigma**2)
    31     return numerator/denominator
    32 def e_step(mus=mus0,sigmas=sigmas0,x=x0,priors=np.ones(len(mus0))/len(mus0)):
    33     """
    34 
    35     :param mus: gaussian centers, an array of shape (m,)
    36     :param sigmas: gaussian standard deviations, an array of shape (m,)
    37     :param x: n samples with no labels
    38     :return: m by n array, where m is # classes
    39     """
    40     assert len(mus)==len(sigmas),"mus and sigmas doesn't have the same length"
    41     m=len(mus)
    42     n=len(x)
    43     w=np.zeros(shape=(m,n))
    44     for j in range(m):
    45         for i in range(n):
    46             w[j][i]=gauss(x=x[i],mu=mus[j],sigma=sigmas[j])*priors[j]
    47     w_sum_wrt_j=np.sum(w,axis=0)#note j is the row index
    48     for j in range(m):
    49         w[j,:]=w[j,:]/w_sum_wrt_j
    50     return w
    51 def m_step(w,current_mus,x=x0):
    52     """
    53 
    54     :param w: m by n array, where m is # classes
    55     :return: mus: gaussian centers, an array of shape (m,)
    56              sigmas: gaussian standard deviations, an array of shape (m,)
    57     """
    58     m,n=w.shape
    59     mus=np.zeros(shape=(m))
    60     sigmas=np.zeros(shape=(m))
    61     for j in range(m):
    62         mus[j]=np.dot(
    63             w[j,:],x
    64         )
    65     mus/=np.sum(w,axis=1)
    66     for j in range(m):
    67         sigmas[j]=np.sqrt(np.dot(
    68             w[j, :], (x-current_mus[j])**2
    69         ))
    70     sigmas/=np.sqrt(np.sum(w,axis=1))
    71 
    72     priors=np.zeros(shape=(len(mus)))
    73     for i in range(n):
    74         tmp=list(map(
    75             gauss,[x[i]]*m,mus,sigmas
    76         ))
    77         tmpmaxindex,tmpmax=max(
    78             enumerate(tmp),key=operator.itemgetter(1)
    79         )
    80         # print(tmp)
    81         # print(tmpmaxindex)
    82         priors[tmpmaxindex]+=1/n
    83     return mus,sigmas,priors
    84 def solve(x=x0,priors=np.ones(len(mus0))/len(mus0)):
    85     # print("priors={}".format(priors))
    86     mus=mus0
    87     sigmas=sigmas0
    88     for k in range(500):
    89         w=e_step(mus=mus,sigmas=sigmas,x=x,priors=priors)
    90         mus,sigmas,priors=m_step(w,current_mus=mus,x=x0)
    91         print("k={},mus={},sigmas={},priors={}".format(k,mus,sigmas,priors))
    92 
    93 if __name__ == '__main__':
    94     solve()

    After 100 iterations, we get an approximation of the real model.

      1 /usr/local/bin/python3.5 /home/csdl/review/fulcrum/gmm/gmm.py
      2 k=0,mus=[ 0.81734343  1.27122747],sigmas=[ 1.60216343  1.33905931],priors=[ 0.32  0.68]
      3 k=1,mus=[ 0.73393663  1.21263431],sigmas=[ 1.48989073  1.27140643],priors=[ 0.35  0.65]
      4 k=2,mus=[ 0.72025041  1.24207148],sigmas=[ 1.47760392  1.25840835],priors=[ 0.36  0.64]
      5 k=3,mus=[ 0.69405554  1.2656654 ],sigmas=[ 1.47453155  1.2480128 ],priors=[ 0.36  0.64]
      6 k=4,mus=[ 0.65993336  1.28545741],sigmas=[ 1.47454151  1.238417  ],priors=[ 0.36  0.64]
      7 k=5,mus=[ 0.62512005  1.30527053],sigmas=[ 1.4739642   1.22830782],priors=[ 0.36  0.64]
      8 k=6,mus=[ 0.59009448  1.32522573],sigmas=[ 1.47230468  1.21788024],priors=[ 0.36  0.64]
      9 k=7,mus=[ 0.55504913  1.34523959],sigmas=[ 1.46932309  1.20732602],priors=[ 0.36  0.64]
     10 k=8,mus=[ 0.52016003  1.36521637],sigmas=[ 1.46489424  1.19678812],priors=[ 0.36  0.64]
     11 k=9,mus=[ 0.4855794   1.38507002],sigmas=[ 1.45897578  1.18636451],priors=[ 0.36  0.64]
     12 k=10,mus=[ 0.45142496  1.4047313 ],sigmas=[ 1.45158393  1.17611449],priors=[ 0.36  0.64]
     13 k=11,mus=[ 0.41777707  1.42414967],sigmas=[ 1.44277296  1.16606539],priors=[ 0.36  0.64]
     14 k=12,mus=[ 0.38468177  1.44329208],sigmas=[ 1.43261873  1.15621962],priors=[ 0.37  0.63]
     15 k=13,mus=[ 0.36595587  1.46867892],sigmas=[ 1.41990091  1.14409883],priors=[ 0.37  0.63]
     16 k=14,mus=[ 0.33654056  1.48870368],sigmas=[ 1.4082571   1.13343039],priors=[ 0.37  0.63]
     17 k=15,mus=[ 0.30597566  1.50763142],sigmas=[ 1.39543174  1.12335036],priors=[ 0.37  0.63]
     18 k=16,mus=[ 0.27568252  1.52609593],sigmas=[ 1.38137316  1.11360905],priors=[ 0.37  0.63]
     19 k=17,mus=[ 0.24588996  1.54419117],sigmas=[ 1.36625212  1.10407072],priors=[ 0.37  0.63]
     20 k=18,mus=[ 0.21664299  1.56192385],sigmas=[ 1.35022455  1.09464684],priors=[ 0.37  0.63]
     21 k=19,mus=[ 0.18796432  1.57928065],sigmas=[ 1.33342219  1.0852798 ],priors=[ 0.37  0.63]
     22 k=20,mus=[ 0.1598861   1.59623644],sigmas=[ 1.31596643  1.07593506],priors=[ 0.37  0.63]
     23 k=21,mus=[ 0.13245872  1.61275414],sigmas=[ 1.2979812   1.06659735],priors=[ 0.39  0.61]
     24 k=22,mus=[ 0.13549936  1.64420575],sigmas=[ 1.28163006  1.05238461],priors=[ 0.4  0.6]
     25 k=23,mus=[ 0.13362832  1.67212388],sigmas=[ 1.26763647  1.03761078],priors=[ 0.4  0.6]
     26 k=24,mus=[ 0.11750175  1.69125511],sigmas=[ 1.25330002  1.02525138],priors=[ 0.41  0.59]
     27 k=25,mus=[ 0.11224826  1.71494289],sigmas=[ 1.23950504  1.01230038],priors=[ 0.42  0.58]
     28 k=26,mus=[ 0.11153847  1.7395662 ],sigmas=[ 1.22728752  0.99889453],priors=[ 0.42  0.58]
     29 k=27,mus=[ 0.0999276   1.75644918],sigmas=[ 1.21474604  0.98770556],priors=[ 0.43  0.57]
     30 k=28,mus=[ 0.09911993  1.77770261],sigmas=[ 1.20375615  0.97601043],priors=[ 0.43  0.57]
     31 k=29,mus=[ 0.08991339  1.79234269],sigmas=[ 1.19274093  0.96620904],priors=[ 0.43  0.57]
     32 k=30,mus=[ 0.07854133  1.80401995],sigmas=[ 1.18163507  0.95803992],priors=[ 0.43  0.57]
     33 k=31,mus=[ 0.06708472  1.81391145],sigmas=[ 1.1708709  0.9510143],priors=[ 0.43  0.57]
     34 k=32,mus=[ 0.05629168  1.82248392],sigmas=[ 1.16077864  0.94483468],priors=[ 0.43  0.57]
     35 k=33,mus=[ 0.04644144  1.8299628 ],sigmas=[ 1.15153082  0.93934709],priors=[ 0.43  0.57]
     36 k=34,mus=[ 0.03761987  1.83648519],sigmas=[ 1.14319449  0.93447086],priors=[ 0.43  0.57]
     37 k=35,mus=[ 0.02982246  1.84215374],sigmas=[ 1.13577403  0.93015559],priors=[ 0.43  0.57]
     38 k=36,mus=[ 0.02299928  1.84705693],sigmas=[ 1.12923679  0.92636035],priors=[ 0.43  0.57]
     39 k=37,mus=[ 0.01707735  1.85127645],sigmas=[ 1.12352817  0.92304533],priors=[ 0.43  0.57]
     40 k=38,mus=[ 0.01197298  1.85488949],sigmas=[ 1.11858109  0.92016939],priors=[ 0.43  0.57]
     41 k=39,mus=[ 0.00759925  1.85796875],sigmas=[ 1.11432244  0.91769023],priors=[ 0.43  0.57]
     42 k=40,mus=[ 0.00387068  1.86058202],sigmas=[ 1.11067765  0.91556544],priors=[ 0.43  0.57]
     43 k=41,mus=[  7.06082311e-04   1.86279150e+00],sigmas=[ 1.10757393  0.91375369],priors=[ 0.43  0.57]
     44 k=42,mus=[-0.00196965  1.86465346],sigmas=[ 1.10494246  0.91221583],priors=[ 0.43  0.57]
     45 k=43,mus=[-0.00422464  1.86621814],sigmas=[ 1.10271971  0.91091554],priors=[ 0.43  0.57]
     46 k=44,mus=[-0.00611974  1.86752982],sigmas=[ 1.10084819  0.9098198 ],priors=[ 0.43  0.57]
     47 k=45,mus=[-0.00770859  1.86862714],sigmas=[ 1.09927671  0.90889909],priors=[ 0.43  0.57]
     48 k=46,mus=[-0.00903796  1.86954354],sigmas=[ 1.09796019  0.90812732],priors=[ 0.43  0.57]
     49 k=47,mus=[-0.01014832  1.87030773],sigmas=[ 1.09685943  0.90748172],priors=[ 0.43  0.57]
     50 k=48,mus=[-0.01107441  1.87094421],sigmas=[ 1.09594057  0.90694261],priors=[ 0.43  0.57]
     51 k=49,mus=[-0.01184586  1.87147378],sigmas=[ 1.09517461  0.90649307],priors=[ 0.43  0.57]
     52 k=50,mus=[-0.01248783  1.87191401],sigmas=[ 1.09453685  0.90611867],priors=[ 0.43  0.57]
     53 k=51,mus=[-0.01302159  1.87227973],sigmas=[ 1.09400634  0.90580718],priors=[ 0.43  0.57]
     54 k=52,mus=[-0.01346505  1.87258336],sigmas=[ 1.09356541  0.90554823],priors=[ 0.43  0.57]
     55 k=53,mus=[-0.01383328  1.87283531],sigmas=[ 1.09319917  0.90533313],priors=[ 0.43  0.57]
     56 k=54,mus=[-0.01413888  1.87304431],sigmas=[ 1.09289515  0.90515454],priors=[ 0.43  0.57]
     57 k=55,mus=[-0.0143924   1.87321761],sigmas=[ 1.09264288  0.90500635],priors=[ 0.43  0.57]
     58 k=56,mus=[-0.01460264  1.87336127],sigmas=[ 1.09243365  0.90488343],priors=[ 0.43  0.57]
     59 k=57,mus=[-0.01477693  1.87348033],sigmas=[ 1.09226016  0.9047815 ],priors=[ 0.43  0.57]
     60 k=58,mus=[-0.01492139  1.87357899],sigmas=[ 1.09211635  0.90469701],priors=[ 0.43  0.57]
     61 k=59,mus=[-0.0150411   1.87366073],sigmas=[ 1.09199717  0.90462698],priors=[ 0.43  0.57]
     62 k=60,mus=[-0.01514028  1.87372844],sigmas=[ 1.09189842  0.90456896],priors=[ 0.43  0.57]
     63 k=61,mus=[-0.01522245  1.87378452],sigmas=[ 1.09181661  0.90452088],priors=[ 0.43  0.57]
     64 k=62,mus=[-0.01529051  1.87383097],sigmas=[ 1.09174884  0.90448106],priors=[ 0.43  0.57]
     65 k=63,mus=[-0.01534687  1.87386944],sigmas=[ 1.0916927   0.90444807],priors=[ 0.43  0.57]
     66 k=64,mus=[-0.01539356  1.87390129],sigmas=[ 1.09164621  0.90442075],priors=[ 0.43  0.57]
     67 k=65,mus=[-0.01543222  1.87392767],sigmas=[ 1.09160771  0.90439813],priors=[ 0.43  0.57]
     68 k=66,mus=[-0.01546423  1.87394951],sigmas=[ 1.09157583  0.90437939],priors=[ 0.43  0.57]
     69 k=67,mus=[-0.01549074  1.87396759],sigmas=[ 1.09154943  0.90436388],priors=[ 0.43  0.57]
     70 k=68,mus=[-0.01551269  1.87398257],sigmas=[ 1.09152757  0.90435103],priors=[ 0.43  0.57]
     71 k=69,mus=[-0.01553086  1.87399496],sigmas=[ 1.09150947  0.9043404 ],priors=[ 0.43  0.57]
     72 k=70,mus=[-0.0155459   1.87400523],sigmas=[ 1.09149449  0.90433159],priors=[ 0.43  0.57]
     73 k=71,mus=[-0.01555836  1.87401373],sigmas=[ 1.09148208  0.9043243 ],priors=[ 0.43  0.57]
     74 k=72,mus=[-0.01556868  1.87402076],sigmas=[ 1.09147181  0.90431826],priors=[ 0.43  0.57]
     75 k=73,mus=[-0.01557722  1.87402659],sigmas=[ 1.0914633   0.90431327],priors=[ 0.43  0.57]
     76 k=74,mus=[-0.01558428  1.87403141],sigmas=[ 1.09145626  0.90430913],priors=[ 0.43  0.57]
     77 k=75,mus=[-0.01559014  1.8740354 ],sigmas=[ 1.09145043  0.9043057 ],priors=[ 0.43  0.57]
     78 k=76,mus=[-0.01559498  1.87403871],sigmas=[ 1.09144561  0.90430287],priors=[ 0.43  0.57]
     79 k=77,mus=[-0.01559899  1.87404144],sigmas=[ 1.09144161  0.90430052],priors=[ 0.43  0.57]
     80 k=78,mus=[-0.01560232  1.87404371],sigmas=[ 1.0914383   0.90429857],priors=[ 0.43  0.57]
     81 k=79,mus=[-0.01560506  1.87404558],sigmas=[ 1.09143556  0.90429696],priors=[ 0.43  0.57]
     82 k=80,mus=[-0.01560734  1.87404714],sigmas=[ 1.0914333   0.90429563],priors=[ 0.43  0.57]
     83 k=81,mus=[-0.01560923  1.87404842],sigmas=[ 1.09143142  0.90429453],priors=[ 0.43  0.57]
     84 k=82,mus=[-0.01561079  1.87404948],sigmas=[ 1.09142987  0.90429362],priors=[ 0.43  0.57]
     85 k=83,mus=[-0.01561208  1.87405037],sigmas=[ 1.09142858  0.90429286],priors=[ 0.43  0.57]
     86 k=84,mus=[-0.01561315  1.8740511 ],sigmas=[ 1.09142751  0.90429223],priors=[ 0.43  0.57]
     87 k=85,mus=[-0.01561403  1.8740517 ],sigmas=[ 1.09142663  0.90429172],priors=[ 0.43  0.57]
     88 k=86,mus=[-0.01561476  1.8740522 ],sigmas=[ 1.0914259   0.90429129],priors=[ 0.43  0.57]
     89 k=87,mus=[-0.01561537  1.87405261],sigmas=[ 1.0914253   0.90429093],priors=[ 0.43  0.57]
     90 k=88,mus=[-0.01561587  1.87405295],sigmas=[ 1.0914248   0.90429064],priors=[ 0.43  0.57]
     91 k=89,mus=[-0.01561629  1.87405324],sigmas=[ 1.09142438  0.90429039],priors=[ 0.43  0.57]
     92 k=90,mus=[-0.01561663  1.87405347],sigmas=[ 1.09142404  0.90429019],priors=[ 0.43  0.57]
     93 k=91,mus=[-0.01561692  1.87405367],sigmas=[ 1.09142376  0.90429003],priors=[ 0.43  0.57]
     94 k=92,mus=[-0.01561715  1.87405383],sigmas=[ 1.09142352  0.90428989],priors=[ 0.43  0.57]
     95 k=93,mus=[-0.01561735  1.87405396],sigmas=[ 1.09142333  0.90428977],priors=[ 0.43  0.57]
     96 k=94,mus=[-0.01561751  1.87405407],sigmas=[ 1.09142317  0.90428968],priors=[ 0.43  0.57]
     97 k=95,mus=[-0.01561764  1.87405416],sigmas=[ 1.09142303  0.9042896 ],priors=[ 0.43  0.57]
     98 k=96,mus=[-0.01561775  1.87405424],sigmas=[ 1.09142292  0.90428954],priors=[ 0.43  0.57]
     99 k=97,mus=[-0.01561785  1.8740543 ],sigmas=[ 1.09142283  0.90428948],priors=[ 0.43  0.57]
    100 k=98,mus=[-0.01561792  1.87405435],sigmas=[ 1.09142276  0.90428944],priors=[ 0.43  0.57]
    101 k=99,mus=[-0.01561799  1.8740544 ],sigmas=[ 1.09142269  0.9042894 ],priors=[ 0.43  0.57]
    102 
    103 Process finished with exit code 0

      In addition, a scikit-learn example can be found at http://scikit-learn.org/stable/modules/mixture.html

    [1] Ian Goodfellow. https://www.quora.com/Why-could-generative-models-help-with-unsupervised-learning/answer/Ian-Goodfellow?srid=hTUVm

  • 相关阅读:
    JavaScript 中的undefined and null 学习
    html5 file upload and form data by ajax
    openresty + lua-resty-weedfs + weedfs + graphicsmagick动态生成缩略图(类似淘宝方案)
    ubuntu10.04 安装oracle server 版 笔记
    windows xp + mysql5.5 + phpmyadmin insert 中文繁體
    (原创)ubuntu 10.04+ruby1.9.2+rails3 安装记录
    ruby簡單的代碼行統計工具
    Ruby中如何复制对象 (deep clone)(转载)
    vi 常用命令使用說明
    一个小公司老板的日常管理日记,希望能让创业的朋友学到东西(转载)
  • 原文地址:https://www.cnblogs.com/cxxszz/p/8313163.html
Copyright © 2011-2022 走看看