zoukankan      html  css  js  c++  java
  • 最近点对问题

    在二维平面上的n个点中,如何快速的找出最近的一对点,就是最近点对问题。

        一种简单的想法是暴力枚举每两个点,记录最小距离,在蛮力法实现最近点对问题中,将问题简化:距离最近的点对可能多于一对,找出一对即可,另外只考虑二维平面中的情况。此处考虑到直接用公式计算其距离(欧几里得距离):

    通过遍历所有点集,计算出每一个点对的距离,计算出最近的距离并输出。避免同一对点计算两次,只考虑i<j的点对(pi,pj)。

    其主要循环的步骤就是求出平方值,显然,时间复杂度为O(n^2)。

        在这里介绍一种时间复杂度为O(nlogn)的算法。其实,这里用到了分治的思想。将所给平面上n个点的集合S分成两个子集S1和S2,每个子集中约有n/2个点。然后在每个子集中递归地求最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对。如果这两个点分别在S1和S2中,问题变得复杂了。

        为了使问题变得简单,首先考虑一维的情形。此时,S中的n个点退化为x轴上的n个实数x1,x2,...,xn。最接近点对即为这n个实数中相差最小的两个实数。显然可以先将点排好序,然后线性扫描就可以了。但我们为了便于推广到二维的情形,尝试用分治法解决这个问题。

        假设我们用m点将S分为S1和S2两个集合,这样一来,对于所有的p(S1中的点)和q(S2中的点),有p<q。

        递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设d = min{ |p1-p2| , |q1-q2| }

        由此易知,S中最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{q3,p3},如下图所示。



     

       注意到: 如果最接近点对是{q3,p3},即|p3-q3|<d,则p3和q3两者与m的距离都不超过d,且在区间(m-d,d]和(d,m+d]各有且仅有一个点。这样,就可以在线性时间内实现合并。

        此时,一维情形下的最近点对时间复杂度为O(nlogn)【T(n)=2T(n/2)+O(n)  】

        在二维情形下,类似的,利用分治法,但是难点在于如何实现线性的合并?



     

        由上图可见,形成的宽为2d的带状区间,最多可能有n个点,合并时间最坏情况下为n^2,。但是,P1和P2中的点具有以下稀疏的性质,对于P1中的任意一点,P2中的点必定落在一个d X 2d的矩形中,且最多只需检查六个点(鸽巢原理/鸽舍原理)。

        这样,先将带状区间的点按y坐标排序,然后线性扫描,这样合并的时间复杂度为O(nlogn),几乎为线性了。

    参考:王晓东《算法设计与分析》第二版

  • 相关阅读:
    Codeforces467C George and Job
    Codeforces205E Little Elephant and Furik and RubikLittle Elephant and Furik and Rubik
    Codeforce205C Little Elephant and Interval
    51nod1829 函数
    51nod1574 排列转换
    nowcoder35B 小AA的数列
    Codeforce893E Counting Arrays
    gym101612 Consonant Fencity
    CodeForces559C Gerald and Giant Chess
    CodeForces456D A Lot of Games
  • 原文地址:https://www.cnblogs.com/cy0628/p/13941040.html
Copyright © 2011-2022 走看看