zoukankan      html  css  js  c++  java
  • Visdom 使用教程

    visdom安装与启动服务

    安装visdom

    pip install visdom

    打开服务

    python -m visdom.server

    一直出现下面问题(解决办法:(42条消息) Visdom库(pytorch中的可视化工具)安装问题的解决方案及使用方法详解_Wendy的博客-CSDN博客

     默认大家已经解决这个问题

     浏览器中打开对应的网址。

    visdom常用功能

    首先创建一个新的环境,如不创建则默认在main环境下

    import numpy as np
    import visdom
    import time
    
    viz = visdom.Visdom(env="Test1") # 创建环境名为Test1

    image窗口:图像显示与更新窗口显示

    下面代码在一个image窗口中不断更新显示图像

    #单张图像显示与更新demo
    image = viz.image(np.random.rand(3,256,256),opts={'title':'image1','caption':'How random.'})
    for i in range(10):
        viz.image(np.random.randn( 3, 256, 256),win = image)
        time.sleep(0.5)

    相关代码如下:

     刷新Visdom 出现如下界面:

    images窗口:多个图像显示与更新窗口显示

    #多图像显示与更新demo
    images = viz.images(
            np.random.randn(20, 3, 64, 64),
            opts=dict(title='Random images', caption='How random.',nrow=5)
        )
    for i in range(10):
        viz.images(np.random.randn(20, 3, 64, 64),win = images)
        time.sleep(0.5) 

    Visdom支持图像的批量显示

    from visdom import Visdom
    import numpy as np
    import torch
    from torchvision import datasets, transforms
    
    # 注意数据集路径
    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        r'D:\data',
        train=True,
        download=true,
        transform=transforms.Compose(
            [transforms.ToTensor()])),batch_size=128,shuffle=True)
    sample=next(iter(train_loader)) # 通过迭代器获取样本
    # sample[0]为样本数据 sample[1]为类别  nrow=16表示每行显示16张图像
    viz = Visdom(env='my_visual') # 注意此时我已经换了新环境
    viz.images(sample[0],nrow=16,win='mnist',opts=dict(title='mnist'))
    
    # 'mnist'

    text窗口:显示文本与更新文本

    #text 显示与更新显示demo,将在窗口中连续打印字符
    text = viz.text('Hello World !')
    strForOut = "This is a string for you to print!"
    out = ""
    for i in range(len(strForOut)):
        out = out + strForOut[i]
        viz.text(out,win = text)
        time.sleep(0.2)

    line窗口:绘制折线图与更新折线图

    #绘画折线图演示
    x=0
    name=['acc','loss','loss2']
    for i in range(50):
        y = np.random.randint(5, size=(1, 3))
        viz.line(Y=y,X=np.ones(y.shape)*x,
                        win='line',
                        opts=dict(legend=name,
                            title='line test',
                            width=800,
                            height=800,
                            xlabel='Time',
                            ylabel='Volume'),
                        update=None if x == 0 else 'append'
                        )
        time.sleep(0.1)
        x+=1

    scatter窗口:绘制散点图与更新散点图

    # 绘制散点图演示 二维
    colors = np.random.randint(0, 255, (3, 3,))#第一维3表示该数据可以分为三类,以三种颜色的三点来比表示
    win = viz.scatter(
        X=np.random.rand(255, 2),#表示要展示的散点数据
        #Y=(np.random.rand(255) + 1.5).astype(int),
        Y=np.random.randint(1,4,(255)),#每一个数据的类别,将以其对应的colors中的颜色来显示
        opts=dict(
            markersize=5,
            markercolor=colors,
            legend=['1', '2','3'],
            markersymbol = 'cross-thin-open'
        ),
    )
    # 绘制散点图演示 三维
    colors = np.random.randint(0, 255, (3, 3,))#第一维3表示该数据可以分为三类,以三种颜色的三点来比表示
    win = viz.scatter(
        X=np.random.rand(255, 3),#表示要展示的散点数据
        #Y=(np.random.rand(255) + 1.5).astype(int),
        Y=np.random.randint(1,4,(255)),#每一个数据的类别,将以其对应的colors中的颜色来显示
        opts=dict(
            markersize=5,
            markercolor=colors,
            legend=['1', '2','3'],
            markersymbol = 'cross-thin-open'
        ),
    )

    #实时更新绘制散点图
    legend=['1', '2','3']
    Scatter = viz.scatter(
        X=np.array([[0,0]]),
        Y=np.array([1]),
        opts=dict(
            markersize=5,
            legend=legend,
            # markersymbol = 'cross-thin-open'
            ),
        )
    
    
    for i in range(20):
        X = np.random.rand(1,2)
        Y = np.random.randint(1,4,1)
        print(Y)
    
        viz.scatter(
            X=X,
            Y=Y,
            win=Scatter,
            update= 'append',
            name = legend[Y[0]-1],
            opts=dict(
                markersize=5,
                # markersymbol = 'cross-thin-open'
                )
        )
        time.sleep(0.5)

     通过具体的训练过程通过visdom可视化,通过具体的训练过程通过visdom可视化

    '''
    导入库文件
    '''
    import  torch
    import  torch.nn as nn
    import  torch.nn.functional as F
    import  torch.optim as optim
    from    torchvision import datasets, transforms
    from visdom import Visdom
    import numpy as np
    
    
    '''
    构建简单的模型:简单线性层+Relu函数的多层感知机
    '''
    class MLP(nn.Module):
    
        def __init__(self):
            super(MLP, self).__init__()
    
            self.model = nn.Sequential(
                nn.Linear(784, 200),
                nn.ReLU(inplace=True),
                nn.Linear(200, 200),
                nn.ReLU(inplace=True),
                nn.Linear(200, 10),
                nn.ReLU(inplace=True),
            )
    
        def forward(self, x):
            x = self.model(x)
    
            return x
    
    
    batch_size = 128
    learning_rate = 0.01
    epochs = 10
    
    # 注意数据集路径
    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        r'D:\Users\Administrator\Desktop\PythonDLbasedonPytorch\data', 
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))])),
                                                batch_size=batch_size,
                                                shuffle=True)
    # 注意数据集路径
    test_loader = torch.utils.data.DataLoader(datasets.MNIST(
        r'D:\Users\Administrator\Desktop\PythonDLbasedonPytorch\data',
        train=False,
        transform=transforms.Compose(
            [transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))])),
                                                batch_size=batch_size,
                                                shuffle=True)
    
    # 注意此处初始化visdom类
    viz = Visdom()
    # 绘制起点
    viz.line([0.], [0.], win="train loss", opts=dict(title='train_loss'))
    device = torch.device('cuda:0')
    net = MLP().to(device)
    optimizer = optim.SGD(net.parameters(), lr=learning_rate)
    criteon = nn.CrossEntropyLoss().to(device)
    
    for epoch in range(epochs):
    
        for batch_idx, (data, target) in enumerate(train_loader):
            data = data.view(-1, 28 * 28)
            data, target = data.to(device), target.cuda()
            logits = net(data)
            loss = criteon(logits, target)
    
            optimizer.zero_grad()
            loss.backward()
            # print(w1.grad.norm(), w2.grad.norm())
            optimizer.step()
    
            if batch_idx % 100 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
    
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data = data.view(-1, 28 * 28)
            data, target = data.to(device), target.cuda()
            logits = net(data)
            test_loss += criteon(logits, target).item()
    
            pred = logits.argmax(dim=1)
            correct += pred.eq(target).float().sum().item()
    
        test_loss /= len(test_loader.dataset)
        # 绘制epoch以及对应的测试集损失loss
        viz.line([test_loss], [epoch], win="train loss", update='append')
        print(
            '\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
                test_loss, correct, len(test_loader.dataset),
                100. * correct / len(test_loader.dataset)))

    loss曲线如图所示

     ..........

    visdom基本可视化函数

    - vis.image : 图片
    - vis.line: 曲线
    - vis.images : 图片列表
    - vis.text : 抽象HTML 输出文字
    - vis.properties : 属性网格
    - vis.audio : 音频
    - vis.video : 视频
    - vis.svg : SVG对象
    - vis.matplot : matplotlib图
    - vis.save : 序列化状态服务端

    上述函数参数

    • 注意opt的参数都可以用python字典的格式传入,大家可以参考下方使用方法
    - opts.title : 图标题
    - opts.width : 图宽
    - opts.height : 图高
    - opts.showlegend : 显示图例 (true or false)
    - opts.xtype : x轴的类型 ('linear' or 'log')
    - opts.xlabel : x轴的标签
    - opts.xtick : 显示x轴上的刻度 (boolean)
    - opts.xtickmin : 指定x轴上的第一个刻度 (number)
    - opts.xtickmax : 指定x轴上的最后一个刻度 (number)
    - opts.xtickvals : x轴上刻度的位置(table of numbers)
    - opts.xticklabels : 在x轴上标记标签 (table of strings)
    - opts.xtickstep : x轴上刻度之间的距离 (number)
    - opts.xtickfont :x轴标签的字体 (dict of font information)
    - opts.ytype : type of y-axis ('linear' or 'log')
    - opts.ylabel : label of y-axis
    - opts.ytick : show ticks on y-axis (boolean)
    - opts.ytickmin : first tick on y-axis (number)
    - opts.ytickmax : last tick on y-axis (number)
    - opts.ytickvals : locations of ticks on y-axis (table of numbers)
    - opts.yticklabels : ticks labels on y-axis (table of strings)
    - opts.ytickstep : distances between ticks on y-axis (number)
    - opts.ytickfont : font for y-axis labels (dict of font information)
    - opts.marginleft : 左边框 (in pixels)
    - opts.marginright :右边框 (in pixels)
    - opts.margintop : 上边框 (in pixels)
    - opts.marginbottom: 下边框 (in pixels)
    - opts.lagent=['']: 显示图标

    更多应用请参考官方demo:
    https://github.com/facebookresearch/visdom/blob/master/example/demo.py

    GitHub地址:https://github.com/facebookresearch/visdom

    Ref:(42条消息) visdom 使用教程_加油_加油_DrDu的博客-CSDN博客_visdom使用

      (42条消息) PyTorch 训练可视化教程 visdom_赵继超的笔记-CSDN博客_pytorch训练可视化

  • 相关阅读:
    java中的几种对象(PO,VO,DAO,BO,POJO)
    【转】Spring boot 打成jar包问题总结
    mac 上安装lua
    Mac下更新Vim到最新版本
    刘以鬯和香港文学
    权重随机算法的java实现
    MySQL具体解释(7)-----------MySQL线程池总结(一)
    IIS PHP 配置 问题总结
    HDU 3622 Bomb Game(2-sat)
    poj 2388 Who's in the Middle
  • 原文地址:https://www.cnblogs.com/cy0628/p/15598618.html
Copyright © 2011-2022 走看看