zoukankan      html  css  js  c++  java
  • Euler Project question 14 in python way

    # This Python file uses the following encoding: utf-8
    # The following iterative sequence is defined for the set of positive integers:

    # n → n/2 (n is even)
    # n → 3n + 1 (n is odd)

    # Using the rule above and starting with 13, we generate the following sequence:

    # 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
    # It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.

    # Which starting number, under one million, produces the longest chain?

    # NOTE: Once the chain starts the terms are allowed to go above one million.
    import time
    start = time.time()
    def chain_len(n):
        len = 1
        while n != 1:
            if n % 2 == 0:
                n /= 2
                len += 1
            else:
                n = 3*n + 1
                len += 1
            return len
    max_len = 1
    max_len_num = 1
    for i in xrange(1, 1000000):
        if chain_len(i) > max_len:
            max_len = chain_len(i)
            max_len_num = i
    print "%s produces the longest chain and cost %s seconds" % (max_len_num, time.time() - start)

  • 相关阅读:
    sql小练习
    登录测试点
    游戏签到
    移动端和pc端微信加入群聊
    小说
    微信语言输入
    linux tar压缩解压缩命令详解
    linux使用nginx配置web服务器
    FFmpeg 视频处理入门教程
    Git学习
  • 原文地址:https://www.cnblogs.com/cyberpaz/p/4036496.html
Copyright © 2011-2022 走看看