Description
判断一个有向图是否对于任意两点 $x$, $y$ 都有一条路径使$x - >y$或 $y - >x$
Solution
对于一个强联通分量内的点 都是可以互相到达的。
接下来我们考虑缩点后的DAG是否任意两点都有路径能使一点到达另一点。
然后我就不会了~~
我们进行一遍拓扑排序, 如果过程中有超过一个点的入度为 $0$ ,那么就不符合条件(仔细想想好像还是对的
Code
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #include<queue> 5 #define rd read() 6 #define R register 7 using namespace std; 8 9 const int N = 1e5; 10 11 int head[N], tot; 12 int Head[N], Tot; 13 int dfn[N], low[N], st[N] ,tp, vis[N], cnt; 14 int col_num, col[N], ru[N]; 15 int n, m, T; 16 17 queue<int> q; 18 19 struct edge { 20 int nxt, to, fr; 21 }e[N << 2], E[N << 2]; 22 23 int read() { 24 int X = 0, p = 1; char c = getchar(); 25 for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1; 26 for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0'; 27 return X * p; 28 } 29 30 void add(int u, int v) { 31 e[++tot].to = v; 32 e[tot].nxt = head[u]; 33 e[tot].fr = u; 34 head[u] = tot; 35 } 36 37 void Add(int u, int v) { 38 E[++Tot].to = v; 39 E[Tot].nxt = Head[u]; 40 E[Tot].fr = u; 41 Head[u] = Tot; 42 } 43 44 bool topsort() { 45 int num = 0; 46 for(int i = 1; i <= tot; ++i) { 47 int u = col[e[i].fr], v = col[e[i].to]; 48 if(u == v) continue; 49 ru[v]++; 50 Add(u, v); 51 } 52 for(int i = 1; i <= col_num; ++i) 53 if(ru[i] == 0) num++, q.push(i); 54 if(num > 1) 55 return 0; 56 for(int u; !q.empty();) { 57 if(num > 1) return 0; 58 u = q.front(); q.pop(); 59 num--; 60 for(int i = Head[u]; i; i = E[i].nxt) { 61 int nt = E[i].to; 62 ru[nt]--; 63 if(!ru[nt]) 64 num++, q.push(nt); 65 } 66 } 67 return 1; 68 } 69 70 void tarjan(int u) { 71 dfn[u] = low[u] = ++cnt; 72 st[++tp] = u; 73 vis[u] = 1; 74 for(R int i = head[u]; i; i = e[i].nxt) { 75 int nt = e[i].to; 76 if(!dfn[nt]) { 77 tarjan(nt); 78 low[u] = min(low[u], low[nt]); 79 } 80 else if(vis[nt]) low[u] = min(low[u], dfn[nt]); 81 } 82 if(low[u] == dfn[u]) { 83 ++col_num; 84 for(; tp; ) { 85 int z = st[tp--]; 86 vis[z] = 0; 87 col[z] = col_num; 88 if(z == u) break; 89 } 90 } 91 } 92 93 void init() { 94 Tot = tp = tot = cnt = col_num = 0; 95 memset(vis, 0 ,sizeof(vis)); 96 memset(dfn, 0, sizeof(dfn)); 97 memset(col, 0, sizeof(col)); 98 memset(head, 0, sizeof(head)); 99 memset(low, 0, sizeof(low)); 100 memset(st, 0, sizeof(tp)); 101 memset(Head, 0, sizeof(Head)); 102 memset(ru, 0, sizeof(ru)); 103 while(!q.empty()) q.pop(); 104 } 105 106 int main() 107 { 108 T = rd; 109 for(; T; T--) { 110 init(); 111 n = rd; m = rd; 112 for(int i = 1; i <= m; ++i) { 113 int u = rd, v = rd; 114 add(u, v); 115 } 116 for(int i = 1; i <= n; ++i) 117 if(!dfn[i]) tarjan(i); 118 if(topsort()) puts("Yes"); 119 else puts("No"); 120 } 121 }