zoukankan      html  css  js  c++  java
  • BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC

    Solution

    想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可

    但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n$. 从 $i+n$ 到 $i$ 连边, $i+2n$ 到 $i+n$ 连边

    若 $dis[j,i]=2$,则把 $j$ 向 $i+n$连边, 距离为 $3$时同理

    但是发现这样点数就有 $3*N$ 个, 二分答案+矩乘的复杂度会非常高。

    那么只能用和倍增求 $LCA$ 类似的解法, 二进制枚举

    复杂度为$O(N^3 logk)$

    Code

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #define rd read()
     5 #define ll long long
     6 #define N 130
     7 #define R register
     8 using namespace std;
     9 
    10 int n, up, m;
    11 ll cnt;
    12 
    13 int read() {
    14     int X = 0, p = 1; char c = getchar();
    15     for (; c > '9' || c < '0'; c = getchar())
    16         if (c == '-') p = -1;
    17     for (; c >= '0' && c <= '9'; c = getchar())
    18         X = X * 10 + c - '0';
    19     return X * p;
    20 }
    21 
    22 struct matrix {
    23     ll mp[N][N];
    24     bool yue;
    25     matrix() {
    26         yue = false;
    27     }
    28     matrix operator * (const matrix &b) const {
    29         matrix re;
    30         memset(re.mp, 0, sizeof(re.mp));
    31         for (R int i = 0; i <= up; ++i)
    32             for (R int j = 0; j <= up; ++j) {
    33                 for (R int k = 0; k <= up; ++k)
    34                     re.mp[i][j] += mp[i][k] * b.mp[k][j];
    35                 if (re.mp[i][j] < 0) re.yue = true;
    36             }
    37         return re;
    38     }
    39 }ans, po[70];
    40 
    41 bool check(matrix tmp) {
    42     ll rest = cnt;
    43     if (tmp.yue) return 1;
    44     for (int i = 1; i <= n; ++i) {
    45         if (tmp.mp[i][0] < 0) return 1;
    46         if (tmp.mp[i][0] - 1 >= rest) return 1;
    47         rest -= tmp.mp[i][0] - 1;
    48     }
    49     return 0;
    50 }
    51 
    52 int main()
    53 {
    54     n = rd; m = rd;
    55     up = n * 3;
    56     scanf("%lld", &cnt);
    57     po[0].mp[0][0] = 1;
    58     for (int i = 1; i <= n; ++i) {
    59         po[0].mp[i + n][i] = 1;
    60         po[0].mp[i + 2 * n][i + n] = 1;
    61         po[0].mp[i][0] = 1;
    62         ans.mp[i][i] = 1;
    63     }
    64     for (R int i = 1; i <= m; ++i) {
    65         int u = rd, v = rd, w = rd - 1;
    66         po[0].mp[u][v + n * w]++;
    67     }
    68     bool flag = false;
    69     int lim;
    70     for (lim = 1; lim <= 65; ++lim) {
    71         po[lim] = po[lim - 1] * po[lim - 1];
    72         if (check(po[lim])) {
    73             flag = true; break;
    74         }
    75     }
    76     if (!flag ) return puts("-1"), 0;
    77     ll res = 0;
    78     for (int i = lim; ~i; --i) {
    79         matrix tmp = ans * po[i];
    80         if (!check(tmp)) ans = tmp, res += 1LL << i;
    81     }
    82     printf("%lld
    ", res);
    83 }
    View Code
  • 相关阅读:
    575. Distribute Candies
    242. Valid Anagram
    349. Intersection of Two Arrays
    290. Word Pattern
    389. Find the Difference
    httpModules 与 httpHandlers
    JS获取浏览器信息及屏幕分辨率
    asp.net 页面编码 设置的几种方法
    IIS是如何处理ASP.NET请求的
    VS2010常用插件介绍之Javascript插件(一)
  • 原文地址:https://www.cnblogs.com/cychester/p/9848197.html
Copyright © 2011-2022 走看看