zoukankan      html  css  js  c++  java
  • Writing Code

    Time Limit:3000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

    Let's call a sequence of non-negative integers v1, v2, ..., vn a plan, if v1 + v2 + ... + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most b bugs in total.

    Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

    Input

    The first line contains four integers nmbmod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

    The next line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

    Output

    Print a single integer — the answer to the problem modulo mod.

    Sample Input

    Input
    3 3 3 100
    1 1 1
    Output
    10
    Input
    3 6 5 1000000007
    1 2 3
    Output
    0
    Input
    3 5 6 11
    1 2 1
    Output
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 
     4 int main()
     5 {
     6     int i,j,k;
     7     int n,m,b,mod,dp[505][505],a[505];
     8     memset(dp,0,sizeof(dp));
     9     scanf("%d %d %d %d",&n,&m,&b,&mod);
    10 
    11     for(i=1;i<=n;i++)
    12         scanf("%d",&a[i]);
    13     dp[0][0]=1;
    14     for(i=1;i<=n;i++)
    15     {
    16         for(j=0;j<m;j++)
    17         {
    18             for(k=0;k<=b-a[i];k++)
    19             {
    20                 dp[j+1][k+a[i]]=dp[j][k]+dp[j+1][k+a[i]];
    21                 dp[j+1][k+a[i]]=dp[j+1][k+a[i]]%mod;
    22             }
    23         }
    24     }
    25     int ans=0;
    26     for(k=0;k<=b;k++)
    27     {
    28         ans=ans+dp[m][k];
    29         ans=ans%mod;
    30     }
    31     printf("%d
    ",ans);
    32     return 0;
    33 }
    View Code
  • 相关阅读:
    物料外部编码的模糊查询
    ◆◆1LSMW的简单范例-LSMW导入会计科目
    通过Tcode查找LSMW
    LSMW批量更新物料主数据
    ◆◆0HR报表开发-Join & Projection
    HR常用宏(一)
    ◆◆0PM01-创建信息类型(infotype)教程
    keras_9_激活函数 Activations
    keras_8_优化器 Optimizers
    keras_7_评估标准 Metrics
  • 原文地址:https://www.cnblogs.com/cyd308/p/4651792.html
Copyright © 2011-2022 走看看