有向图的强连通分量
POJ 1236 - Network of Schools(基础)
http://acm.pku.edu.cn/JudgeOnline/problem?id=1236
题意:问添加多少边可成为完全连通图
解法:缩点,看度数
/** head-file **/ #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstring> #include <string> #include <vector> #include <queue> #include <stack> #include <list> #include <set> #include <map> #include <algorithm> /** define-for **/ #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) /** define-useful **/ #define clr(x,a) memset(x,a,sizeof(x)) #define sz(x) int(x.size()) #define see(x) cerr<<#x<<" "<<x<<endl #define se(x) cerr<<" "<<x /** test **/ #define Display(A, n, m) { REP(i, n){ REP(j, m) cout << A[i][j] << " "; cout << endl; } } #define Display_1(A, n, m) { REP_1(i, n){ REP_1(j, m) cout << A[i][j] << " "; cout << endl; } } using namespace std; /** typedef **/ typedef long long LL; /** Add - On **/ const int direct4[4][2]={ {0,1},{1,0},{0,-1},{-1,0} }; const int direct8[8][2]={ {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int direct3[6][3]={ {1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1} }; const int MOD = 1000000007; const int INF = 0x3f3f3f3f; const long long INFF = 1LL << 60; const double EPS = 1e-9; const double OO = 1e15; const double PI = acos(-1.0); //M_PI; const int maxn=111111; const int maxm=511111; int n,m; struct EDGENODE{ int to; int w; int next; }; struct SGRAPH{ int head[maxn]; EDGENODE edges[maxm]; int edge; void init() { clr(head,-1); edge=0; } void addedge(int u,int v,int c=1) { edges[edge].w=c,edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++; } int pre[maxn],lowlink[maxn],sccno[maxn],scc_cnt,dfs_clock; stack<int>stk; void dfs(int u) { pre[u]=lowlink[u]=++dfs_clock; stk.push(u); for (int i=head[u];i!=-1;i=edges[i].next){ int v=edges[i].to; if (!pre[v]){ dfs(v); lowlink[u]=min(lowlink[u],lowlink[v]); } else if (!sccno[v]){ lowlink[u]=min(lowlink[u],pre[v]); } } if (lowlink[u]==pre[u]){ scc_cnt++; int x; do{ x=stk.top(); stk.pop(); sccno[x]=scc_cnt; }while (x!=u); } } void find_scc(int n) { dfs_clock=scc_cnt=0; clr(sccno,0); clr(pre,0); while (!stk.empty()) stk.pop(); REP_1(i,n) if (!pre[i]) dfs(i); } }; SGRAPH solver; bool mp[111][111]; int main() { int ans1,ans2; int idd,odd; while (~scanf("%d",&n)) { clr(mp,0); solver.init(); REP_1(i,n) { int xt; while (~scanf("%d",&xt)) { if (xt==0) break; solver.addedge(i,xt); } } solver.find_scc(n); REP(u,n) { for (int i=solver.head[u];i!=-1;i=solver.edges[i].next) { int v=solver.edges[i].to; if (solver.sccno[u]!=solver.sccno[v]) { mp[solver.sccno[u]][solver.sccno[v]]=true; } } } //Display_1(mp,solver.scc_cnt,solver.scc_cnt); ans1=ans2=0; m=solver.scc_cnt; REP_1(i,m) { idd=0; odd=0; REP_1(j,m) { if (mp[j][i]) idd++; if (mp[i][j]) odd++; } if (!idd) ans1++; if (!odd) ans2++; } ans2=max(ans1,ans2); if (m==1) ans2=0; printf("%d %d ",ans1,ans2); } return 0; }
POJ 2553 - The Bottom of a Graph(基础)
找出度为零的强连通分量,把符合条件的点都输出出来。
/** head-file **/ #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstring> #include <string> #include <vector> #include <queue> #include <stack> #include <list> #include <set> #include <map> #include <algorithm> /** define-for **/ #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) /** define-useful **/ #define clr(x,a) memset(x,a,sizeof(x)) #define sz(x) int(x.size()) #define see(x) cerr<<#x<<" "<<x<<endl #define se(x) cerr<<" "<<x #define pb push_back #define mp make_pair /** test **/ #define Display(A, n, m) { REP(i, n){ REP(j, m) cout << A[i][j] << " "; cout << endl; } } #define Display_1(A, n, m) { REP_1(i, n){ REP_1(j, m) cout << A[i][j] << " "; cout << endl; } } using namespace std; /** typedef **/ typedef long long LL; /** Add - On **/ const int direct4[4][2]={ {0,1},{1,0},{0,-1},{-1,0} }; const int direct8[8][2]={ {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int direct3[6][3]={ {1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1} }; const int MOD = 1000000007; const int INF = 0x3f3f3f3f; const long long INFF = 1LL << 60; const double EPS = 1e-9; const double OO = 1e15; const double PI = acos(-1.0); //M_PI; const int maxn=111111; const int maxm=511111; int n,m; struct EDGENODE{ int to; int w; int next; }; struct SGRAPH{ int head[maxn]; EDGENODE edges[maxm]; int edge; void init() { clr(head,-1); edge=0; } void addedge(int u,int v,int c=0) { edges[edge].w=c,edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++; } int pre[maxn],lowlink[maxn],sccno[maxn],scc_cnt,dfs_clock; stack<int>stk; void dfs(int u) { pre[u]=lowlink[u]=++dfs_clock; stk.push(u); for (int i=head[u];i!=-1;i=edges[i].next){ int v=edges[i].to; if (!pre[v]){ dfs(v); lowlink[u]=min(lowlink[u],lowlink[v]); } else if (!sccno[v]){ lowlink[u]=min(lowlink[u],pre[v]); } } if (lowlink[u]==pre[u]){ scc_cnt++; int x; do{ x=stk.top(); stk.pop(); sccno[x]=scc_cnt; }while (x!=u); } } void find_scc(int n) { dfs_clock=scc_cnt=0; clr(sccno,0); clr(pre,0); while (!stk.empty()) stk.pop(); REP_1(i,n) if (!pre[i]) dfs(i); } }solver; bool a[5555][5555]; vector<int>ans; vector<int>ot; int main() { while (~scanf("%d",&n)) { if (n==0) break; scanf("%d",&m); clr(a,0); solver.init(); while (m--) { int x,y; scanf("%d%d",&x,&y); solver.addedge(x,y); } solver.find_scc(n); m=solver.scc_cnt; REP_1(u,n) { for (int i=solver.head[u];i!=-1;i=solver.edges[i].next) { int v=solver.edges[i].to; if (solver.sccno[u]!=solver.sccno[v]) { a[solver.sccno[u]][solver.sccno[v]]=true; } } } ans.clear(); REP_1(i,m) { int sum=0; REP_1(j,m) { if (a[i][j]) sum++; } if (sum==0) ans.push_back(i); } ot.clear(); REP(k,sz(ans)) REP_1(i,n) if (solver.sccno[i]==ans[k]) ot.push_back(i); sort(ot.begin(),ot.end()); REP(i,sz(ot)-1) { cout<<ot[i]<<" "; } cout<<ot[sz(ot)-1]<<endl; } return 0; }