----------
In order to prepare the “The First National ACM School Contest”(in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well.
You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major – find the cost of the two cheapest connection plans.
Input
The Input starts with the number of test cases, T (1£T£15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3£N£100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai, Bi, Ci , where Ci is the cost of the connection (1£Ci£300) between schools Ai and Bi. The schools are numbered with integers in the range 1 to N.
Output
For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1=S2 if and only if there are two cheapest plans, otherwise S1£S2. You can assume that it is always possible to find the costs S1 and S2..
Sample Input |
Sample Output |
2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 |
110 121 37 37 |
Problem source: Ukrainian National Olympiad in Informatics 2001
Problem author: Shamil Yagiyayev
Problem submitter: Dmytro Chernysh
Problem solution: Shamil Yagiyayev, Dmytro Chernysh, K M Hasan
----------
一个裸的次小生成树,没什么好说的,我肯定做麻烦了
----------
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <cmath> using namespace std; const int INF=0x3f3f3f3f; const int maxn=211; const int maxm=21111; const double eps=1e-12; const double OO=1e100; struct Road{ int u,v; int w; Road(){} Road(int u,int v,int w){ this->u=u; this->v=v; this->w=w; } bool operator<(const Road& rhs) const{ return w<rhs.w; } }; class DisjointSet{ private: int pa[maxn]; int n; public: void makeSet(int n){ this->n=n; for (int i=0;i<=n;i++) pa[i]=i; } int findSet(int x){ if (x!=pa[x]) pa[x]=findSet(pa[x]); return pa[x]; } void unionSet(int x,int y){ x=findSet(x); y=findSet(y); if (x!=y) pa[x]=y; } }disjointSet; class Graph{ private: struct EdgeNode{ int to; int w; int next; }; int head[maxn],edge,n; EdgeNode edges[maxm*2]; int maxCost[maxn][maxn]; void dfsCost(int s,int u,int pa){ for (int i=head[u];i!=-1;i=edges[i].next){ int v=edges[i].to; int w=edges[i].w; if (v==pa) continue; maxCost[s][v]=maxCost[s][u]; if (maxCost[s][v]<w) maxCost[s][v]=w; dfsCost(s,v,u); } } public: void init(int n){ this->n=n; memset(head,-1,sizeof(int)*(n+1)); edge=0; } void addedge(int u,int v,int w){ edges[edge].w=w,edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++; } void findMaxCost(){ for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) maxCost[i][j]=0; for (int i=1;i<=n;i++){ dfsCost(i,i,-1); } } int getMaxCost(int x,int y){ return maxCost[x][y]; } }tree; vector<Road>road; int n,m; int minTree; bool can[maxn][maxn]; void initializer(){ memset(can,0,sizeof(can)); disjointSet.makeSet(n); road.clear(); minTree=0; tree.init(n); } void input(){ for (int i=0;i<m;i++){ int a,b,w; scanf("%d%d%d",&a,&b,&w); road.push_back(Road(a,b,w)); } } void Kruskal(){ sort(road.begin(),road.end()); for (vector<Road>::iterator it=road.begin();it!=road.end();it++){ int u=it->u; int v=it->v; int w=it->w; if (disjointSet.findSet(u)!=disjointSet.findSet(v)){ minTree+=w; disjointSet.unionSet(u,v); tree.addedge(u,v,w); tree.addedge(v,u,w); can[u][v]=can[v][u]=true; } } tree.findMaxCost(); } void solve(){ int ans=INF; for (vector<Road>::iterator it=road.begin();it!=road.end();it++){ int u=it->u; int v=it->v; int w=it->w; if (!can[u][v]){ ans=min(ans,minTree-tree.getMaxCost(u,v)+w); } } printf("%d %d ",minTree,ans); } int main() { int T; scanf("%d",&T); while (T--){ scanf("%d%d",&n,&m); initializer(); input(); Kruskal(); solve(); } return 0; }
----------