zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup(RMQ_ST)

    题目链接:http://poj.org/problem?

    id=3264


    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source



    PS:

    百度百科RMQ:http://baike.baidu.com/view/1536346.htm?fr=aladdin

    RMQ:http://blog.csdn.net/zztant/article/details/8535764


    代码例如以下:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    using namespace std;
    const int MAXN = 100117;
    int n,query;
    int num[MAXN];
    
    int F_Min[MAXN][20],F_Max[MAXN][20];
    
    void Init()
    {
        for(int i = 1; i <= n; i++)
        {
            F_Min[i][0] = F_Max[i][0] = num[i];
        }
    
        for(int i = 1; (1<<i) <= n; i++)  //按区间长度递增顺序递推
        {
            for(int j = 1; j+(1<<i)-1 <= n; j++)  //区间起点
            {
                F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]);
                F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]);
            }
        }
    }
    
    int Query_max(int l,int r)
    {
        int k = (int)(log(double(r-l+1))/log((double)2));
        return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]);
    }
    
    int Query_min(int l,int r)
    {
        int k = (int)(log(double(r-l+1))/log((double)2));
        return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]);
    }
    
    int main()
    {
        int a,b;
        scanf("%d %d",&n,&query);
        for(int i = 1; i <= n; i++)
            scanf("%d",&num[i]);
        Init();
        while(query--)
        {
            scanf("%d %d",&a,&b);
            //printf("区间%d到%d的最大值为:%d
    ",a,b,Query_max(a,b));
            //printf("区间%d到%d的最小值为:%d
    ",a,b,Query_min(a,b));
            printf("%d
    ",Query_max(a,b)-Query_min(a,b));
        }
        return 0;
    }
    


  • 相关阅读:
    C#,asp.net,命名空间名,类名,方法名的获得
    asp.net引用用户控件
    SQL数据是否存在(是否有数据)判断,表,存储过程是否存在
    asp:Button 事件,点击事件 html Button runat="sever"
    CSS图片最大大小限制
    asp.net 路径
    Js实现网站的重定向,Js转向网址,Js跳转
    ViewState 页面状态保留
    vs 附加到进程
    sql XML处理,sp_xml_preparedocument,openxml
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/6860699.html
Copyright © 2011-2022 走看看