zoukankan      html  css  js  c++  java
  • 双边滤波

    Qt 平台,双边滤波原理代码例如以下:

    #include <QCoreApplication>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <iostream>
    #include <cmath>
    
    using namespace cv;
    using namespace std;
    
    double Gaussian( double x, double sigma )//高斯核參数计算函数
    {
        return exp(-x/(2*sigma*sigma));
    }
    
    Mat GaussiCore( int d, double sigma )//高斯核计算
    {
        int dHalf = (d-1)/2;
        Mat core( d, d, CV_64FC1, Scalar(0));
        for ( int i = -dHalf; i < dHalf; i ++ )
        {
            double *corePtr = core.ptr<double>(i+dHalf);
            for ( int j = -dHalf; j < dHalf; j ++ )
            {
                corePtr[j+dHalf] = Gaussian((i*i+j*j), sigma);
            }
        }
        return core;
    }
    
    int main()
    {
        double duration;
        int d = 11;//滤波核直径
        int dHalf = (d-1)/2;//滤波核半径
        double sigma_d = 22;//双边滤波核高斯系数标准差
        double sigma_r = 11;//双边滤波核空间域系数标准差
        double temp1 = 0.0;
        double temp2 = 0.0;
        Mat src = imread("lena.jpg", 0);
        Mat srcBorder( src.rows+d-1, src.cols+d-1, CV_8UC1, Scalar(128));
        int srcRow = src.rows;
        int srcCol = src.cols;
        Mat dst( srcRow, srcCol, CV_8UC1, Scalar(0));
        Mat gaussiCore;
    duration = static_cast<double>(getTickCount());
        for ( int i = 0; i < srcRow; i ++ )
        {
            uchar *srcPtr = src.ptr<uchar>(i);
            uchar *srcBorderPtr = srcBorder.ptr<uchar>(i+dHalf);
            for ( int j = 0; j < srcCol; j ++ )
            {
                srcBorderPtr[j+dHalf] = srcPtr[j];
            }
        }
    
        gaussiCore = GaussiCore( d, sigma_d );
    
        for ( int i = 0; i < srcRow; i ++ )
        {
            uchar *dstPtr = dst.ptr<uchar>(i);
            uchar *srcBorderPtr1 = srcBorder.ptr<uchar>(i+dHalf);
            for ( int j = 0; j < srcCol; j ++ )
            {
                temp1 = 0.0;
                temp2 = 0.0;
                for ( int n = -dHalf+i, rr = 0; n < dHalf+i; n ++, rr ++ )
                {
                    uchar *srcBorderPtr2 = srcBorder.ptr<uchar>(n);
                    double *gaussiCorePtr = gaussiCore.ptr<double>(rr);
                    for ( int l = -dHalf+j, rl = 0; l < dHalf+j; l ++, rl ++ )
                    {
                        temp1 += (double)srcBorderPtr2[l] * gaussiCorePtr[rl]
                                * Gaussian((srcBorderPtr2[l]-srcBorderPtr1[j+dHalf])*(srcBorderPtr2[l]-srcBorderPtr1[j+dHalf]), sigma_r);
                        temp2 +=  gaussiCorePtr[rl]
                                * Gaussian((srcBorderPtr2[l]-srcBorderPtr1[j+dHalf])*(srcBorderPtr2[l]-srcBorderPtr1[j+dHalf]), sigma_r);
                    }
                }
                dstPtr[j] = temp1/temp2;
            }
        }
    
    duration = static_cast<double>(getTickCount()) - duration;
    duration /= getTickFrequency();
    cout << duration << endl;
        namedWindow("src", 0);
        imshow("src", src);
        namedWindow("dst", 0);
        imshow("dst", dst);
        waitKey(0);
        return 0;
    }




    由于代码单纯介绍双边滤波原理。所以与 OpenCV 自带双边滤波速度还是有非常大差距,有时间会继续研究关于双边滤波的加速算法。下面是双边滤波核计算公式,对于双边滤波为什么能保边降噪。这里简单说明一下:首先降噪是肯定的。由于滤波核有高斯滤波系数。总所周知高斯函数有滤波降噪的作用。而双边滤波系数除了有高斯系数之外。还增加了像素领域的值域差系数,即像素领域内的像素值与像素本身的像素值相差越大,依据最后一个总体公式能够看出,总体系数会变小,从而该像素受到影响也就越小,而仅仅有在图像的边缘区域才会有这样的情况出生,所以在图像的边缘附近差点儿不受滤波系数的影响,这样就起到了保边的效果。

    1、离散卷积公式:



    2、高斯系数:



    3、空间域系数:



    4、总体双边滤波系数:



    做了一点加速。比原来的快几十毫秒,代码例如以下:

    #include <QCoreApplication>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <iostream>
    #include <cmath>
    
    using namespace cv;
    using namespace std;
    
    double Gaussian( double x, double sigma )//高斯核參数计算函数
    {
        return exp(-x/(2*sigma*sigma));
    }
    
    Mat GaussiCore( int d, double sigma )//高斯核计算
    {
        int dHalf = (d-1)/2;
        int row = d;
        int col = d;
        Mat core( row, col, CV_64FC1, Scalar(0));
        if ( core.isContinuous() )
        {
            double *corePtr = core.ptr<double>(0);
            for ( int i = 0; i < row; i ++ )
            {
                for ( int j = 0; j < col; j ++ )
                {
                    corePtr[i*col+j] = Gaussian(((i-dHalf)*(i-dHalf)+(j-dHalf)*(j-dHalf)), sigma);
                }
            }
        }
        else
        {
            for ( int i = -dHalf; i < dHalf; i ++ )
            {
                double *corePtr = core.ptr<double>(i+dHalf);
                for ( int j = -dHalf; j < dHalf; j ++ )
                {
                    corePtr[j+dHalf] = Gaussian((i*i+j*j), sigma);
                }
            }
        }
        return core;
    }
    
    int main()
    {
        double duration;
        int d = 11;//滤波核直径
        int dHalf = (d-1)/2;//滤波核半径
        double sigma_d = 22;//双边滤波核高斯系数标准差
        double sigma_r = 11;//双边滤波核空间域系数标准差
        double temp1 = 0.0;
        double temp2 = 0.0;
        Mat src = imread("lena.jpg", 0);
        Mat srcBorder( src.rows+d-1, src.cols+d-1, CV_8UC1, Scalar(128));
        int srcRow = src.rows;
        int srcCol = src.cols;
        Mat dst( srcRow, srcCol, CV_8UC1, Scalar(0));
        Mat gaussiCore;
    duration = static_cast<double>(getTickCount());
    
        if ( src.isContinuous() && srcBorder.isContinuous() )
        {
            uchar *srcPtr = src.ptr<uchar>(0);
            uchar *srcBorderPtr = srcBorder.ptr<uchar>(0);
            for ( int i = 0; i < srcRow; i ++ )
            {
                for ( int j = 0; j < srcCol; j ++ )
                {
                    srcBorderPtr[(i+dHalf)*(srcCol+d-1)+j+dHalf] = srcPtr[i*srcCol+j];
                }
            }
        }
        else
        {
            for ( int i = 0; i < srcRow; i ++ )
            {
                uchar *srcPtr = src.ptr<uchar>(i);
                uchar *srcBorderPtr = srcBorder.ptr<uchar>(i+dHalf);
                for ( int j = 0; j < srcCol; j ++ )
                {
                    srcBorderPtr[j+dHalf] = srcPtr[j];
                }
            }
        }
    
        gaussiCore = GaussiCore( d, sigma_d );
    
        for ( int i = 0; i < srcRow; i ++ )
        {
            uchar *dstPtr = dst.ptr<uchar>(i);
            uchar *srcBorderPtr1 = srcBorder.ptr<uchar>(i+dHalf);
            for ( int j = 0; j < srcCol; j ++ )
            {
                temp1 = 0.0;
                temp2 = 0.0;
                for ( int n = -dHalf+i, rr = 0; n < dHalf+i; n ++, rr ++ )
                {
                    uchar *srcBorderPtr2 = srcBorder.ptr<uchar>(n);
                    double *gaussiCorePtr = gaussiCore.ptr<double>(rr);
                    for ( int l = -dHalf+j, rl = 0; l < dHalf+j; l ++, rl ++ )
                    {
                        temp1 += (double)srcBorderPtr2[l] * gaussiCorePtr[rl]
                                * Gaussian((srcBorderPtr2[l]-srcBorderPtr1[j+dHalf])*(srcBorderPtr2[l]-srcBorderPtr1[j+dHalf]), sigma_r);
                        temp2 +=  gaussiCorePtr[rl]
                                * Gaussian((srcBorderPtr2[l]-srcBorderPtr1[j+dHalf])*(srcBorderPtr2[l]-srcBorderPtr1[j+dHalf]), sigma_r);
                    }
                }
                dstPtr[j] = temp1/temp2;
            }
        }
    
    duration = static_cast<double>(getTickCount()) - duration;
    duration /= getTickFrequency();
    cout << duration << endl;
        namedWindow("src", 0);
        imshow("src", src);
        namedWindow("dst", 0);
        imshow("dst", dst);
        waitKey(0);
        return 0;
    }
    


  • 相关阅读:
    An Introduction to C & GUI Programming -----Simon Long 学习笔记 6
    An Introduction to C & GUI Programming -----Simon Long 学习笔记 5
    An Introduction to C & GUI Programming -----Simon Long 学习笔记 4
    An Introduction to C & GUI Programming -----Simon Long 学习笔记 3
    An Introduction to C & GUI Programming -----Simon Long 学习笔记 2
    替罪羊树 (Scapegoat Tree)
    Miller-Rabin 质数检测
    杜教筛
    狄利克雷卷积&莫比乌斯反演
    取整函数的性质
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/6938492.html
Copyright © 2011-2022 走看看