zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 33094   Accepted: 15552
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    打算用两种方法做。顺便差别一下,RMQ和线段树的差别。他们都都说RMQ比线段树好,我发现时间也差不了多少,尽管都没优化


    AC代码例如以下:


    线段树。

    ///线段树   2250MS   2404K
    
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #define  M 50010
    #define inf 100000000
    using namespace std;
    
    struct H
    {
        int l,r,maxx,minn;
    }trees[4*M];
    
    int n,m;
    int num[M];
    
    void build_trees(int jd ,int l,int r)
    {
        trees[jd].l=l;trees[jd].r=r;
        if(l==r)
        {
            trees[jd].maxx=num[l];
            trees[jd].minn=num[l];
            return ;
        }
        int mid = (l+r)/2;
        build_trees(jd*2,l,mid);
        build_trees(jd*2+1,mid+1,r);
        trees[jd].maxx=max(trees[jd*2].maxx,trees[jd*2+1].maxx);
        trees[jd].minn=min(trees[jd*2].minn,trees[jd*2+1].minn);
    }
    
    int query_max(int jd,int l,int r)
    {
        int ans=0;
        if(l<=trees[jd].l&&r>=trees[jd].r)
            return trees[jd].maxx;
        int mid = (trees[jd].l+trees[jd].r)/2;
        if(l<=mid) ans=max(ans,query_max(jd*2,l,r)) ;
        if(r>mid) ans=max(ans,query_max(jd*2+1,l,r));
        return ans;
    }
    
    int query_min(int jd,int l,int r)
    {
        int ans=inf;
        if(l<=trees[jd].l&&r>=trees[jd].r)
            return trees[jd].minn;
        int mid = (trees[jd].l+trees[jd].r)/2;
        if(l<=mid) ans=min(ans,query_min(jd*2,l,r)) ;
        if(r>mid) ans=min(ans,query_min(jd*2+1,l,r));
        return ans;
    }
    
    int main()
    {
        int i,j;
        int a,b;
        while(~scanf("%d%d",&n,&m))
        {
            memset(num,0,sizeof num);
            for(i=1;i<=n;i++)
            scanf("%d",&num[i]);
            build_trees(1,1,n);
            for(i=1;i<=m;i++)
            {
                scanf("%d%d",&a,&b);
                printf("%d
    ",query_max(1,a,b)-query_min(1,a,b));
            }
        }
        return 0;
    }
    


    RMQ!。!


    ///RMQ  1813MS  12100K
    
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #define  M 50010
    #define inf 100000000
    using namespace std;
    
    int n,m;
    int num[M];
    int dp1[M][30],dp2[M][30];
    
    void RMQ_min()
    {
        int i,j;
        memset(dp1,0,sizeof dp1);
        for(i=1;i<=n;i++)
            dp1[i][0]=num[i];
        for(j=1;1<<j<=n;j++)
            for(i=1;i+(1<<j)-1<=n;i++)
                dp1[i][j]=min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
    }
    
    void RMQ_max()
    {
        int i,j;
        memset(dp2,0,sizeof dp2);
        for(i=1;i<=n;i++)
            dp2[i][0]=num[i];
        for(j=1;1<<j<=n;j++)
            for(i=1;i+(1<<j)-1<=n;i++)
                dp2[i][j]=max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
    }
    
    int rmq_min(int l,int r)
    {
        int i,j;
        int k=0;
        while(1<<(k+1)<=r-l+1)
            k++;
        return min(dp1[l][k],dp1[r-(1<<k)+1][k]);
    }
    
    int rmq_max(int l,int r)
    {
        int i,j;
        int k=0;
        while(1<<(k+1)<=r-l+1)
            k++;
        return max(dp2[l][k],dp2[r-(1<<k)+1][k]);
    }
    
    int main()
    {
        int i,j;
        int a,b;
        while(~scanf("%d%d",&n,&m))
        {
            for(i=1;i<=n;i++)
                scanf("%d",&num[i]);
                RMQ_min();
                RMQ_max();
                for(i=1;i<=m;i++)
                {
                    scanf("%d%d",&a,&b);
                    printf("%d
    ",rmq_max(a,b)-rmq_min(a,b));
                }
    
        }
        return 0;
    }




  • 相关阅读:
    linux学习笔记 ftp命令
    linux 学习笔记 wc命令
    linux 学习笔记 finding people
    通配符
    linux 学习笔记 管道 pipe ls cp mv
    linux学习笔记 其他常用命令
    linux 学习笔记 执行脚本篇章
    solr分词一:mmseg4j
    solr介绍一:Analyzer(分析器)、Tokenizer(分词器)
    solr-4.10.2版本使用tomcat7部署
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/7198587.html
Copyright © 2011-2022 走看看