zoukankan      html  css  js  c++  java
  • STL源代码剖析 容器 stl_deque.h

    本文为senlie原创。转载请保留此地址:http://blog.csdn.net/zhengsenlie


    deque

    ------------------------------------------------------------------------
    ??一直看不懂 operator->() 。不明确它为什么不用接受參数。直接 return &(operator*())
    好像我们用迭代器的时候也不没怎么用到这个函数,甚至我都不会用


    1.概述
    vector 是单向开口的连续线性空间。deque 则是一种双向开口的连续线性空间
    同意常数时间内对起头端进行元素的插入和移除操作
    没有容量概念。由于它是动态地以分段连续空间组合而成,随时能够添加一段新的空间并链接起来
    deque 的迭代器不是普通指针,如非必要。应选择 vector 而非 deque
    对deque 排序,可将 deque 先完整拷贝到一个 vector 身上,将 vector 排序后,再复制回 deque
    图 4-9
    2.deque 的中控器
    map (不是 STL 里的 map 容器) --> 主控,是一小块连续空间。每一个元素指向还有一段较大的连续空间 node-buffer
    node-buffer --> 存储空间主体
    图 4-10
    3.迭代器
    cur --> 指出分段连续空间在哪里 
    first, last --> 推断自己是否已经处于缓冲区的边缘
    node --> 在缓冲区边缘前进或后退时必须知道中控器在哪
    图4-11
    图4-12



    #ifndef __SGI_STL_INTERNAL_DEQUE_H
    #define __SGI_STL_INTERNAL_DEQUE_H
    
    
    __STL_BEGIN_NAMESPACE 
    
    
    #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
    #pragma set woff 1174
    #endif
    
    
    // Note: this function is simply a kludge to work around several compilers'
    //  bugs in handling constant expressions.
    // 决定缓冲区大小
    // 假设 n 不为 0。传回n ,表示 buffer size 由用户自己定义
    // 假设 n 为 0,表示 buffer size 使用默认值,那么
    // 	 假设 sz(元素大小,sizeof(value_type))小于512,返回 512/sz,
    //	 假设 sz不小于 512。返回 1
    inline size_t __deque_buf_size(size_t n, size_t sz)
    {
      return n != 0 ? n : (sz < 512 ? size_t(512 / sz) : size_t(1));
    }
    
    
    #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG
    template <class T, class Ref, class Ptr, size_t BufSiz>
    struct __deque_iterator {
      typedef __deque_iterator<T, T&, T*, BufSiz>             iterator;
      typedef __deque_iterator<T, const T&, const T*, BufSiz> const_iterator;
      static size_t buffer_size() {return __deque_buf_size(BufSiz, sizeof(T)); }
    #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */
    template <class T, class Ref, class Ptr>
    struct __deque_iterator {
      typedef __deque_iterator<T, T&, T*>             iterator;
      typedef __deque_iterator<T, const T&, const T*> const_iterator;
      static size_t buffer_size() {return __deque_buf_size(0, sizeof(T)); }
    #endif
    
    
      typedef random_access_iterator_tag iterator_category;
      typedef T value_type;
      typedef Ptr pointer;
      typedef Ref reference;
      typedef size_t size_type;
      typedef ptrdiff_t difference_type;
      typedef T** map_pointer;
    
    
      typedef __deque_iterator self;
    
    
      T* cur; //指向缓冲区的现行元素
      T* first; //指向缓冲区的头
      T* last; // 指向缓冲区的尾
       
      map_pointer node; //指向中控器
    
    
      __deque_iterator(T* x, map_pointer y) 
        : cur(x), first(*y), last(*y + buffer_size()), node(y) {}
      __deque_iterator() : cur(0), first(0), last(0), node(0) {}
      __deque_iterator(const iterator& x)
        : cur(x.cur), first(x.first), last(x.last), node(x.node) {}
      //解引用	
      reference operator*() const { return *cur; }
    #ifndef __SGI_STL_NO_ARROW_OPERATOR
      //??好像没用过这东西
      pointer operator->() const { return &(operator*()); }
    #endif /* __SGI_STL_NO_ARROW_OPERATOR */
      //两个迭代器之间的距离
      difference_type operator-(const self& x) const {
        return difference_type(buffer_size()) * (node - x.node - 1) +
          (cur - first) + (x.last - x.cur);
      }
      //前置++
      self& operator++() {
        ++cur;					//切换至下一个元素
        if (cur == last) {		//假设已达到所在缓冲区的尾端
          set_node(node + 1);	//就切换至下一缓冲区的第一个元素
          cur = first;
        }
        return *this; 
      }
      //后置++
      self operator++(int)  {
        self tmp = *this;
        ++*this;				//调用前置++ 完毕前进 ?

    --> yes return tmp; } //前置-- self& operator--() { if (cur == first) { set_node(node - 1); cur = last; } --cur; return *this; } //后置-- self operator--(int) { self tmp = *this; --*this; return tmp; } //随机存取 self& operator+=(difference_type n) { difference_type offset = n + (cur - first); //目标位置在同一缓冲区 if (offset >= 0 && offset < difference_type(buffer_size())) cur += n; //目标位置在不同缓冲区 else { difference_type node_offset = offset > 0 ? offset / difference_type(buffer_size()) : -difference_type((-offset - 1) / buffer_size()) - 1; //切换至正确的节点(缓冲区) set_node(node + node_offset); //切换至正确的元素 cur = first + (offset - node_offset * difference_type(buffer_size())); } return *this; } self operator+(difference_type n) const { self tmp = *this; return tmp += n; //? 不懂为什么是对 暂时变量 调用 operator+= --> 由于是 operator+,本来就不用改变 this 指向的对象 } self& operator-=(difference_type n) { return *this += -n; } self operator-(difference_type n) const { self tmp = *this; return tmp -= n; } reference operator[](difference_type n) const { return *(*this + n); } bool operator==(const self& x) const { return cur == x.cur; } bool operator!=(const self& x) const { return !(*this == x); } bool operator<(const self& x) const { return (node == x.node) ? (cur < x.cur) : (node < x.node); } //使用 set_node 来跳一个缓冲区 void set_node(map_pointer new_node) { node = new_node; first = *new_node; last = first + difference_type(buffer_size()); } }; #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG template <class T, class Ref, class Ptr, size_t BufSiz> inline random_access_iterator_tag iterator_category(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return random_access_iterator_tag(); } template <class T, class Ref, class Ptr, size_t BufSiz> inline T* value_type(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return 0; } template <class T, class Ref, class Ptr, size_t BufSiz> inline ptrdiff_t* distance_type(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return 0; } #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */ template <class T, class Ref, class Ptr> inline random_access_iterator_tag iterator_category(const __deque_iterator<T, Ref, Ptr>&) { return random_access_iterator_tag(); } template <class T, class Ref, class Ptr> inline T* value_type(const __deque_iterator<T, Ref, Ptr>&) { return 0; } template <class T, class Ref, class Ptr> inline ptrdiff_t* distance_type(const __deque_iterator<T, Ref, Ptr>&) { return 0; } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // See __deque_buf_size(). The only reason that the default value is 0 // is as a workaround for bugs in the way that some compilers handle // constant expressions. // deque 类 template <class T, class Alloc = alloc, size_t BufSiz = 0> class deque { public: // Basic types typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; public: // Iterators #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG typedef __deque_iterator<T, T&, T*, BufSiz> iterator; typedef __deque_iterator<T, const T&, const T&, BufSiz> const_iterator; #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */ typedef __deque_iterator<T, T&, T*> iterator; typedef __deque_iterator<T, const T&, const T*> const_iterator; #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; typedef reverse_iterator<iterator, value_type, reference, difference_type> reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ protected: // Internal typedefs //元素指针的指针,即指向 map 中元素的指针 typedef pointer* map_pointer; //空间配置器。每次配置一个元素大小 typedef simple_alloc<value_type, Alloc> data_allocator; //空间配置器,每次配置一个指针大小 typedef simple_alloc<pointer, Alloc> map_allocator; static size_type buffer_size() { return __deque_buf_size(BufSiz, sizeof(value_type)); } static size_type initial_map_size() { return 8; } protected: // Data members iterator start; //第一缓冲区的第一个元素 iterator finish; //最后缓冲区的最后一个元素 map_pointer map; //指向 map size_type map_size; // map 内可容纳多少指针 public: // Basic accessors iterator begin() { return start; } iterator end() { return finish; } const_iterator begin() const { return start; } const_iterator end() const { return finish; } reverse_iterator rbegin() { return reverse_iterator(finish); } reverse_iterator rend() { return reverse_iterator(start); } const_reverse_iterator rbegin() const { return const_reverse_iterator(finish); } const_reverse_iterator rend() const { return const_reverse_iterator(start); } reference operator[](size_type n) { return start[difference_type(n)]; } const_reference operator[](size_type n) const { return start[difference_type(n)]; } reference front() { return *start; } reference back() { //?

    下面三行为什么不改为: return *(finish - 1); iterator tmp = finish; --tmp; return *tmp; } const_reference front() const { return *start; } const_reference back() const { const_iterator tmp = finish; --tmp; return *tmp; } size_type size() const { return finish - start;; } size_type max_size() const { return size_type(-1); } bool empty() const { return finish == start; } public: // Constructor, destructor. deque() : start(), finish(), map(0), map_size(0) { create_map_and_nodes(0); } deque(const deque& x) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(x.size()); __STL_TRY { uninitialized_copy(x.begin(), x.end(), start); } __STL_UNWIND(destroy_map_and_nodes()); } deque(size_type n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } deque(int n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } deque(long n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } explicit deque(size_type n) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value_type()); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> deque(InputIterator first, InputIterator last) : start(), finish(), map(0), map_size(0) { range_initialize(first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ deque(const value_type* first, const value_type* last) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(last - first); __STL_TRY { uninitialized_copy(first, last, start); } __STL_UNWIND(destroy_map_and_nodes()); } deque(const_iterator first, const_iterator last) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(last - first); __STL_TRY { uninitialized_copy(first, last, start); } __STL_UNWIND(destroy_map_and_nodes()); } #endif /* __STL_MEMBER_TEMPLATES */ ~deque() { destroy(start, finish); destroy_map_and_nodes(); } deque& operator= (const deque& x) { const size_type len = size(); if (&x != this) { if (len >= x.size()) erase(copy(x.begin(), x.end(), start), finish); else { const_iterator mid = x.begin() + difference_type(len); copy(x.begin(), mid, start); insert(finish, mid, x.end()); } } return *this; } void swap(deque& x) { __STD::swap(start, x.start); __STD::swap(finish, x.finish); __STD::swap(map, x.map); __STD::swap(map_size, x.map_size); } public: // push_* and pop_* void push_back(const value_type& t) { //最后缓冲区尚有一个以上的备用空间 if (finish.cur != finish.last - 1) { construct(finish.cur, t); ++finish.cur; } //仅仅剩一个备用空间 else push_back_aux(t); } void push_front(const value_type& t) { //第一缓冲区尚有备用空间 if (start.cur != start.first) { construct(start.cur - 1, t); --start.cur; } //尚有备用空间 else push_front_aux(t); } void pop_back() { //最后缓冲区有一个或很多其它的元素 if (finish.cur != finish.first) { --finish.cur; //指针前移。相当于排除了最后的元素 destroy(finish.cur); //析构并释放最后的元素 } //最后缓冲区没有不论什么元素 else pop_back_aux(); } void pop_front() { //第一缓冲区有一个或很多其它个元素 if (start.cur != start.last - 1) { destroy(start.cur); ++start.cur; } //第一缓冲区且有一个元素 else pop_front_aux(); } public: // Insert iterator insert(iterator position, const value_type& x) { //假设插入点是 deque 最前端,交给 push_front 去做 if (position.cur == start.cur) { push_front(x); return start; } //假设插入点是 deque 最后端,交给 push_back 去做 else if (position.cur == finish.cur) { push_back(x); iterator tmp = finish; --tmp; return tmp; } //其它情况交给 insert_aux 去做 else { return insert_aux(position, x); } } iterator insert(iterator position) { return insert(position, value_type()); } void insert(iterator pos, size_type n, const value_type& x); void insert(iterator pos, int n, const value_type& x) { insert(pos, (size_type) n, x); } void insert(iterator pos, long n, const value_type& x) { insert(pos, (size_type) n, x); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator pos, InputIterator first, InputIterator last) { insert(pos, first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator pos, const value_type* first, const value_type* last); void insert(iterator pos, const_iterator first, const_iterator last); #endif /* __STL_MEMBER_TEMPLATES */ void resize(size_type new_size, const value_type& x) { const size_type len = size(); if (new_size < len) erase(start + new_size, finish); else insert(finish, new_size - len, x); } void resize(size_type new_size) { resize(new_size, value_type()); } public: // Erase //清除 pos 所指的元素 iterator erase(iterator pos) { iterator next = pos; ++next; difference_type index = pos - start; // 清除点前的元素个数 if (index < (size() >> 1)) { // 假设清除点之前的元素比較少,则移动清除点之前的元素 copy_backward(start, pos, next); pop_front(); } else { //假设清除点之后的元素比較少,则移动清除点之后的元素 copy(next, finish, pos); pop_back(); } return start + index; } iterator erase(iterator first, iterator last); void clear(); protected: // Internal construction/destruction void create_map_and_nodes(size_type num_elements); void destroy_map_and_nodes(); void fill_initialize(size_type n, const value_type& value); #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last, input_iterator_tag); template <class ForwardIterator> void range_initialize(ForwardIterator first, ForwardIterator last, forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */ protected: // Internal push_* and pop_* void push_back_aux(const value_type& t); void push_front_aux(const value_type& t); void pop_back_aux(); void pop_front_aux(); protected: // Internal insert functions #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag); template <class ForwardIterator> void insert(iterator pos, ForwardIterator first, ForwardIterator last, forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */ iterator insert_aux(iterator pos, const value_type& x); void insert_aux(iterator pos, size_type n, const value_type& x); #ifdef __STL_MEMBER_TEMPLATES template <class ForwardIterator> void insert_aux(iterator pos, ForwardIterator first, ForwardIterator last, size_type n); #else /* __STL_MEMBER_TEMPLATES */ void insert_aux(iterator pos, const value_type* first, const value_type* last, size_type n); void insert_aux(iterator pos, const_iterator first, const_iterator last, size_type n); #endif /* __STL_MEMBER_TEMPLATES */ iterator reserve_elements_at_front(size_type n) { size_type vacancies = start.cur - start.first; if (n > vacancies) new_elements_at_front(n - vacancies); return start - difference_type(n); } iterator reserve_elements_at_back(size_type n) { size_type vacancies = (finish.last - finish.cur) - 1; if (n > vacancies) new_elements_at_back(n - vacancies); return finish + difference_type(n); } void new_elements_at_front(size_type new_elements); void new_elements_at_back(size_type new_elements); void destroy_nodes_at_front(iterator before_start); void destroy_nodes_at_back(iterator after_finish); protected: // Allocation of map and nodes // Makes sure the map has space for new nodes. Does not actually // add the nodes. Can invalidate map pointers. (And consequently, // deque iterators.) void reserve_map_at_back (size_type nodes_to_add = 1) { if (nodes_to_add + 1 > map_size - (finish.node - map)) reallocate_map(nodes_to_add, false); } void reserve_map_at_front (size_type nodes_to_add = 1) { if (nodes_to_add > start.node - map) reallocate_map(nodes_to_add, true); } void reallocate_map(size_type nodes_to_add, bool add_at_front); pointer allocate_node() { return data_allocator::allocate(buffer_size()); } void deallocate_node(pointer n) { data_allocator::deallocate(n, buffer_size()); } #ifdef __STL_NON_TYPE_TMPL_PARAM_BUG public: bool operator==(const deque<T, Alloc, 0>& x) const { return size() == x.size() && equal(begin(), end(), x.begin()); } bool operator!=(const deque<T, Alloc, 0>& x) const { return size() != x.size() || !equal(begin(), end(), x.begin()); } bool operator<(const deque<T, Alloc, 0>& x) const { return lexicographical_compare(begin(), end(), x.begin(), x.end()); } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ }; // Non-inline member functions template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, size_type n, const value_type& x) { if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); uninitialized_fill(new_start, start, x); start = new_start; } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); uninitialized_fill(finish, new_finish, x); finish = new_finish; } else insert_aux(pos, n, x); } #ifndef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, const value_type* first, const value_type* last) { size_type n = last - first; if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); __STL_TRY { uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, const_iterator first, const_iterator last) { size_type n = last - first; if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); __STL_TRY { uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } #endif /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc, size_t BufSize> deque<T, Alloc, BufSize>::iterator //清除[first, last)区间内的全部元素 deque<T, Alloc, BufSize>::erase(iterator first, iterator last) { //假设清除区间就是整个 deque ,直接调用 clear() 就可以 if (first == start && last == finish) { clear(); return finish; } else { difference_type n = last - first; difference_type elems_before = first - start; //假设清除区间前面的元素较少,向后移动前方元素(覆盖清除区间)。然后析构冗余元素 if (elems_before < (size() - n) / 2) { copy_backward(start, first, last); iterator new_start = start + n; destroy(start, new_start); for (map_pointer cur = start.node; cur < new_start.node; ++cur) data_allocator::deallocate(*cur, buffer_size()); start = new_start; } //假设清除区间后面的元素较少。向前移动后方元素,然后析构冗余元素 else { copy(last, finish, first); iterator new_finish = finish - n; destroy(new_finish, finish); for (map_pointer cur = new_finish.node + 1; cur <= finish.node; ++cur) data_allocator::deallocate(*cur, buffer_size()); finish = new_finish; } return start + elems_before; } } //清除整个 deque ,须要保有一个缓冲区。

    template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::clear() { //针对头尾以外的每一个缓冲区。析构全部元素并释放缓冲区空间 for (map_pointer node = start.node + 1; node < finish.node; ++node) { destroy(*node, *node + buffer_size()); data_allocator::deallocate(*node, buffer_size()); } //还剩头尾两个缓冲区 if (start.node != finish.node) { destroy(start.cur, start.last); destroy(finish.first, finish.cur); //仅仅释放尾部缓冲区的空间,保留头缓冲区 data_allocator::deallocate(finish.first, buffer_size()); } //仅仅剩一个缓冲区 else //不释放唯一的缓冲区空间 destroy(start.cur, finish.cur); finish = start; } //产生并安排好 deque 的结构 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::create_map_and_nodes(size_type num_elements) { //须要的节点数 = (元素个数/每一个缓冲区可容纳的元素个数) + 1 //假设刚好整除。会多配一个节点 size_type num_nodes = num_elements / buffer_size() + 1; // initial_map_size 函数返回 8 ,所以这里是取 8 和 "所需节点数加2(前后预留一个。扩充时可用)" 的最大值 map_size = max(initial_map_size(), num_nodes + 2); //配置出一个"具有 map_size 个节点"的 map map = map_allocator::allocate(map_size); //令 nstart 和 nfinish 指向 map 所拥有之全部节点的最中央区段 map_pointer nstart = map + (map_size - num_nodes) / 2; map_pointer nfinish = nstart + num_nodes - 1; map_pointer cur; __STL_TRY { //为 map 内的每一个现用节点配置缓冲区。

    全部缓冲区加起来就是 deque 的可用空间(最后一个缓冲区可能留有一些余裕) for (cur = nstart; cur <= nfinish; ++cur) *cur = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (map_pointer n = nstart; n < cur; ++n) deallocate_node(*n); map_allocator::deallocate(map, map_size); throw; } # endif /* __STL_USE_EXCEPTIONS */ //为 deque 内的两个迭代器 start 和 end 设定正确内容 start.set_node(nstart); finish.set_node(nfinish); start.cur = start.first; finish.cur = finish.first + num_elements % buffer_size(); } // This is only used as a cleanup function in catch clauses. template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_map_and_nodes() { for (map_pointer cur = start.node; cur <= finish.node; ++cur) deallocate_node(*cur); map_allocator::deallocate(map, map_size); } //负责产生并安排好 deque 的结构,并元素的初值设定妥当 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::fill_initialize(size_type n, const value_type& value) { create_map_and_nodes(n);//把 deque 的结构都产生并安排好 map_pointer cur; __STL_TRY { //为每一个节点的缓冲区设定初值 for (cur = start.node; cur < finish.node; ++cur) uninitialized_fill(*cur, *cur + buffer_size(), value); //最后一个节点的设定稍有不同(由于尾端可能有备用空间。不必设初值) uninitialized_fill(finish.first, finish.cur, value); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (map_pointer n = start.node; n < cur; ++n) destroy(*n, *n + buffer_size()); destroy_map_and_nodes(); throw; } # endif /* __STL_USE_EXCEPTIONS */ } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> template <class InputIterator> void deque<T, Alloc, BufSize>::range_initialize(InputIterator first, InputIterator last, input_iterator_tag) { create_map_and_nodes(0); for ( ; first != last; ++first) push_back(*first); } template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::range_initialize(ForwardIterator first, ForwardIterator last, forward_iterator_tag) { size_type n = 0; distance(first, last, n); create_map_and_nodes(n); __STL_TRY { uninitialized_copy(first, last, start); } __STL_UNWIND(destroy_map_and_nodes()); } #endif /* __STL_MEMBER_TEMPLATES */ // 仅仅有当 finish.cur == finish.last - 1 时才会调用,即仅仅剩一个备用空间 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::push_back_aux(const value_type& t) { value_type t_copy = t; reserve_map_at_back(); //配置一个新缓冲区 *(finish.node + 1) = allocate_node(); __STL_TRY { construct(finish.cur, t_copy); //设置元素值 finish.set_node(finish.node + 1); //改变 finish, 令其指向新节点 finish.cur = finish.first; //设定 finish 的状态 } __STL_UNWIND(deallocate_node(*(finish.node + 1))); } // 仅仅有当 start.cur == start.first 才会被调用。即第一个缓冲区尚有备用空间可用了 //--> 为什么 push_back 的时候是仅仅有一个备用空间时调用。而 push_front 是没有备用空间时调用 ?? template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::push_front_aux(const value_type& t) { value_type t_copy = t; reserve_map_at_front(); *(start.node - 1) = allocate_node(); __STL_TRY { start.set_node(start.node - 1); start.cur = start.last - 1; construct(start.cur, t_copy); } # ifdef __STL_USE_EXCEPTIONS catch(...) { start.set_node(start.node + 1); start.cur = start.first; deallocate_node(*(start.node - 1)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } // 仅仅有当 finish.cur == finish.first 时才会调用 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>:: pop_back_aux() { deallocate_node(finish.first); //释放最后一个缓冲区 finish.set_node(finish.node - 1); //调整 finish 的状态,使指向上一个缓冲区的最后一个元素 finish.cur = finish.last - 1; destroy(finish.cur); //将该元素析构 } //仅仅有当 start.cur == start.last - 1 时才会调用 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::pop_front_aux() { destroy(start.cur); //将第一缓冲区的第一个元素析构 deallocate_node(start.first); //释放第一缓冲区 start.set_node(start.node + 1); //调整 start 的状态,使指向下一个缓冲区的第一个元素 start.cur = start.first; } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> template <class InputIterator> void deque<T, Alloc, BufSize>::insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag) { copy(first, last, inserter(*this, pos)); } template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::insert(iterator pos, ForwardIterator first, ForwardIterator last, forward_iterator_tag) { size_type n = 0; distance(first, last, n); if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); __STL_TRY { uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } #endif /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc, size_t BufSize> typename deque<T, Alloc, BufSize>::iterator deque<T, Alloc, BufSize>::insert_aux(iterator pos, const value_type& x) { difference_type index = pos - start; value_type x_copy = x; //假设插入点之前的元素个数比較少。在最前端增加与第一个元素同值的元素,然后进行元素移动 if (index < size() / 2) { push_front(front()); iterator front1 = start; ++front1; iterator front2 = front1; ++front2; pos = start + index; iterator pos1 = pos; ++pos1; copy(front2, pos1, front1); } //假设插入点之后的元素个数比較少,在最后端增加与最后一个元素同值的元素。然后进行元素移动 else { push_back(back()); iterator back1 = finish; --back1; iterator back2 = back1; --back2; pos = start + index; copy_backward(pos, back2, back1); } //在插入点上设定新值 *pos = x_copy; return pos; } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, size_type n, const value_type& x) { const difference_type elems_before = pos - start; size_type length = size(); value_type x_copy = x; if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); fill(pos - difference_type(n), pos, x_copy); } else { __uninitialized_copy_fill(start, pos, new_start, start, x_copy); start = new_start; fill(old_start, pos, x_copy); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); fill(pos, pos + difference_type(n), x_copy); } else { __uninitialized_fill_copy(finish, pos + difference_type(n), x_copy, pos, finish); finish = new_finish; fill(pos, old_finish, x_copy); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, ForwardIterator first, ForwardIterator last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { ForwardIterator mid = first; advance(mid, difference_type(n) - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { ForwardIterator mid = first; advance(mid, elems_after); __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, const value_type* first, const value_type* last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { const value_type* mid = first + (difference_type(n) - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { const value_type* mid = first + elems_after; __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, const_iterator first, const_iterator last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= n) { iterator start_n = start + n; uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { const_iterator mid = first + (n - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = length - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > n) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { const_iterator mid = first + elems_after; __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #endif /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::new_elements_at_front(size_type new_elements) { size_type new_nodes = (new_elements + buffer_size() - 1) / buffer_size(); reserve_map_at_front(new_nodes); size_type i; __STL_TRY { for (i = 1; i <= new_nodes; ++i) *(start.node - i) = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type j = 1; j < i; ++j) deallocate_node(*(start.node - j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::new_elements_at_back(size_type new_elements) { size_type new_nodes = (new_elements + buffer_size() - 1) / buffer_size(); reserve_map_at_back(new_nodes); size_type i; __STL_TRY { for (i = 1; i <= new_nodes; ++i) *(finish.node + i) = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type j = 1; j < i; ++j) deallocate_node(*(finish.node + j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_nodes_at_front(iterator before_start) { for (map_pointer n = before_start.node; n < start.node; ++n) deallocate_node(*n); } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_nodes_at_back(iterator after_finish) { for (map_pointer n = after_finish.node; n > finish.node; --n) deallocate_node(*n); } //重换一个 map (配置更大的,拷贝原来的,释放原来的) template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::reallocate_map(size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = finish.node - start.node + 1;//旧节点数 size_type new_num_nodes = old_num_nodes + nodes_to_add;//新节点数 map_pointer new_nstart; //当前 map 的大小大于新节点数的两倍的情况 //即当前 map 足够大,则调整节点区间让它落在 map 的中间 if (map_size > 2 * new_num_nodes) { new_nstart = map + (map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); if (new_nstart < start.node) copy(start.node, finish.node + 1, new_nstart); else copy_backward(start.node, finish.node + 1, new_nstart + old_num_nodes); } //否则,配置一块新的空间 else { size_type new_map_size = map_size + max(map_size, nodes_to_add) + 2; //配置一块新的空间 map_pointer new_map = map_allocator::allocate(new_map_size); new_nstart = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); //拷贝原 map copy(start.node, finish.node + 1, new_nstart); //释放原 map map_allocator::deallocate(map, map_size); //设定新 map 的起始地址和大小 map = new_map; map_size = new_map_size; } //又一次设定迭代器 start 和 finish start.set_node(new_nstart); finish.set_node(new_nstart + old_num_nodes - 1); } // Nonmember functions. #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG template <class T, class Alloc, size_t BufSiz> bool operator==(const deque<T, Alloc, BufSiz>& x, const deque<T, Alloc, BufSiz>& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template <class T, class Alloc, size_t BufSiz> bool operator<(const deque<T, Alloc, BufSiz>& x, const deque<T, Alloc, BufSiz>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #if defined(__STL_FUNCTION_TMPL_PARTIAL_ORDER) && !defined(__STL_NON_TYPE_TMPL_PARAM_BUG) template <class T, class Alloc, size_t BufSiz> inline void swap(deque<T, Alloc, BufSiz>& x, deque<T, Alloc, BufSiz>& y) { x.swap(y); } #endif #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_DEQUE_H */ // Local Variables: // mode:C++ // End:




  • 相关阅读:
    socket.io建立长连接
    编译性语言、解释性语言和脚本语言的区别
    回调函数
    jquery文档处理
    css--Bootstrap框架
    css--960框架
    html基础
    真的理解闭包了吗,用闭包的时候应该注意什么?
    初识reactJs 相关
    简单方便的div垂直居中。
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/7216874.html
Copyright © 2011-2022 走看看