zoukankan      html  css  js  c++  java
  • Evanyou Blog 彩带

      题目传送门


      

    Calculation 2

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6114    Accepted Submission(s): 2499


    Problem Description
    Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
     
    Input 
    For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
     
    Output
    For each test case, you should print the sum module 1000000007 in a line.
     
    Sample Input

    3 4 0

     
    Sample Output
    0 2

      

    Author
    GTmac
    Source 
    2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT

      分析:
      翻译下题面:给你一个正整数$N$,求小于$N$且与$N$不互质的正整数之和,对$1000000007$取模。
      容易想到,直接求肯定不好做,所以转化为求$1$到$N-1$与小于$N$且与$N$互质的正整数之和的差。
      需要用到这个定理:
      令$s$为小于$N$且与$N$互质的正整数之和,则$s=phi(N)*N/2$。
      证明如下:
      首先明确:如果$gcd(n,x)=1,n>x$,则$gcd(n,n-x)=1$,由减法原理易证。
      那么令小于$N$且与$N$互质的正整数集合为$a[]$。那么
      $s=a[0]+a[1]+a[2]+...+a[phi(n)]$
      可转化为
      $s=(n-a[0])+(n-a[1])+(n-a[2])+...+(n-a[phi(n)])$
      (因为$a[]$中元素是不重复的,所以$n-a[i]$也是不重复的,且与$a[]$中的元素一一对应。)
      再将两式相加可得
      $2*s=n*phi(n)$即$s=phi(n)*n/2$
      那么这道题就好做了,求欧拉函数然后代公式就完事了。
      Code:
    //It is made by HolseLee on 18th Jul 2019
    //HDU 3501
    #include<bits/stdc++.h>
    #define mod 1000000007
    using namespace std;
    
    typedef long long ll;
    ll n,ans;
    
    inline ll get(ll x)
    {
        ll ret=n, y=x;
        for(ll i=2; i*i<=y; ++i) {
            if( !(y%i) ) {
                ret=ret*(i-1)/i;
                while( !(y%i) ) y/=i;
            }
        }
        if( y!=1 ) ret=ret*(y-1)/y;
        return (ret*n/2)%mod;
    }
    
    int main()
    {
        while( 1 ) {
            scanf("%lld",&n);
            if( !n ) break;
            ans=((n-1)*n/2)%mod;
            ans=(ans-get(n)+mod)%mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    分形与数据结构第一篇(神奇的色子)
    画图小工具第二篇
    画图小工具第一篇
    图形界面第一篇
    回合制对战游戏第二篇
    回合对战制游戏第一篇(初识java)
    技术+态度+人品
    排序的一些方法(稳定性,内外排序,时间空间复杂度)
    暂时性死区
    vue传值(父子传值,非父子传值)
  • 原文地址:https://www.cnblogs.com/cytus/p/11210242.html
Copyright © 2011-2022 走看看