zoukankan      html  css  js  c++  java
  • uboot向kernel的传参机制——bootm与tags

    http://blog.csdn.net/skyflying2012/article/details/35787971

    最近阅读代码学习了uboot boot kernel的过程以及uboot如何传参给kernel,记录下来,与大家共享:

    U-boot版本:2014.4

    Kernel版本:3.4.55

    一 uboot 如何启动 kernel

    1 do_bootm

    uboot下使用bootm命令启动内核镜像文件uImage,uImage是在zImage头添加了64字节的镜像信息供uboot解析使用,具体这64字节头的内容,我们在分析bootm命令的时候就会一一说到,那直接来看bootm命令。

    在common/cmd_bootm.c中

     
    int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])  
    {  
    #ifdef CONFIG_NEEDS_MANUAL_RELOC  
        static int relocated = 0;  
      
        if (!relocated) {  
            int i;  
      
            /* relocate boot function table */  
            for (i = 0; i < ARRAY_SIZE(boot_os); i++)  
                if (boot_os[i] != NULL)  
                    boot_os[i] += gd->reloc_off;  
      
            /* relocate names of sub-command table */  
            for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++)  
                cmd_bootm_sub[i].name += gd->reloc_off;  
      
            relocated = 1;  
        }  
    #endif  
        /* determine if we have a sub command */  
        argc--; argv++;  
        if (argc > 0) {  
            char *endp;  
      
            simple_strtoul(argv[0], &endp, 16);  
            /* endp pointing to NULL means that argv[0] was just a 
             * valid number, pass it along to the normal bootm processing 
             * 
             * If endp is ':' or '#' assume a FIT identifier so pass 
             * along for normal processing. 
             * 
             * Right now we assume the first arg should never be '-' 
             */  
            if ((*endp != 0) && (*endp != ':') && (*endp != '#'))  
                return do_bootm_subcommand(cmdtp, flag, argc, argv);  
        }  
      
        return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |  
            BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |  
            BOOTM_STATE_LOADOS |  
    #if defined(CONFIG_PPC) || defined(CONFIG_MIPS)  
            BOOTM_STATE_OS_CMDLINE |  
    #endif  
            BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |  
            BOOTM_STATE_OS_GO, &images, 1);  
    }  
    

      

    数组boot_os是bootm最后阶段启动kernel时调用的函数数组,CONFIG_NEEDS_MANUAL_RELOC中的代码含义是将boot_os函数都进行偏移(uboot启动中会将整个code拷贝到靠近sdram顶端的位置执行),

    但是boot_os函数在uboot relocate时已经都拷贝了,所以感觉没必要在进行relocate。这个宏因此没有定义,直接走下面。

    新版uboot对于boot kernel实现了一个类似状态机的机制,将整个过程分成很多个阶段,uboot将每个阶段称为subcommand,

    核心函数是do_bootm_states,需要执行哪个阶段,就在do_bootm_states最后一个参数添加那个宏定义,如: BOOTM_STATE_START

    do_bootm_subcommand是按照bootm参数来指定运行某一个阶段,也就是某一个subcommand

    对于正常的uImage,bootm加tftp的load地址就可以。

    2 do_bootm_states

    这样会走到最后函数do_bootm_states,那就来看看核心函数do_bootm_states

    static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc,  
            char * const argv[], int states, bootm_headers_t *images,int boot_progress)  
    {  
        boot_os_fn *boot_fn;  
        ulong iflag = 0;  
        int ret = 0, need_boot_fn;  
      
        images->state |= states;  
      
        /* 
         * Work through the states and see how far we get. We stop on 
         * any error. 
         */  
        if (states & BOOTM_STATE_START)  
            ret = bootm_start(cmdtp, flag, argc, argv);  
    

      

    参数中需要注意bootm_headers_t *images,这个参数用来存储由image头64字节获取到的的基本信息。由do_bootm传来的该参数是images,是一个全局的静态变量。

    首先将states存储在images的state中,因为states中有BOOTM_STATE_START,调用bootm_start.

    3 第一阶段:bootm_start

    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])  
    {  
        memset((void *)&images, 0, sizeof(images));  
        images.verify = getenv_yesno("verify");  
      
        boot_start_lmb(&images);  
      
        bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");  
        images.state = BOOTM_STATE_START;  
      
        return 0;  
    }  
    

      

    获取verify,bootstage_mark_name标志当前状态为bootm start(bootstage_mark_name可以用于无串口调试,在其中实现LED控制)。

    boot_start_lmb暂时还没弄明白,以后再搞清楚。

    最后修改images.state为bootm start。

    bootm_start主要工作是清空images,标志当前状态为bootm start。

    4 第二阶段:bootm_find_os

    由bootm_start返回后,do_bootm传了BOOTM_STATE_FINDOS,所以进入函数bootm_find_os

     
    static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,char * const argv[])  
    {  
        const void *os_hdr;  
      
        /* get kernel image header, start address and length */  
        os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,  
                &images, &images.os.image_start, &images.os.image_len);  
        if (images.os.image_len == 0) {  
            puts("ERROR: can't get kernel image!
    ");  
            return 1;  
        }  
    

      

    调用boot_get_kernel,函数较长,首先是获取image的load地址,如果bootm有参数,就是img_addr,之后如下:

    bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);  
      
    /* copy from dataflash if needed */  
    img_addr = genimg_get_image(img_addr);  
      
    /* check image type, for FIT images get FIT kernel node */  
    *os_data = *os_len = 0;  
    buf = map_sysmem(img_addr, 0);  
    

      

    首先标志当前状态,然后调用genimg_get_image,该函数会检查当前的img_addr是否在sdram中,如果是在flash中,则拷贝到sdram中CONFIG_SYS_LOAD_ADDR处,修改img_addr为该地址。

    这里说明我们的image可以在flash中用bootm直接起

    map_sysmem为空函数,buf即为img_addr。

     
    switch (genimg_get_format(buf)) {  
    case IMAGE_FORMAT_LEGACY:  
        printf("## Booting kernel from Legacy Image at %08lx ...
    ",img_addr);  
        hdr = image_get_kernel(img_addr, images->verify);  
        if (!hdr)  
            return NULL;  
        bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);  
      
        /* get os_data and os_len */  
        switch (image_get_type(hdr)) {  
        case IH_TYPE_KERNEL:  
        case IH_TYPE_KERNEL_NOLOAD:  
            *os_data = image_get_data(hdr);  
            *os_len = image_get_data_size(hdr);  
            break;  
        case IH_TYPE_MULTI:  
            image_multi_getimg(hdr, 0, os_data, os_len);  
            break;  
     
      case IH_TYPE_STANDALONE:  
          *os_data = image_get_data(hdr);  
          *os_len = image_get_data_size(hdr);  
          break;  
      default:  
          printf("Wrong Image Type for %s command
    ",cmdtp->name);  
          bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);  
          return NULL;  
    }  
      
    /* 
     * copy image header to allow for image overwrites during 
     * kernel decompression. 
     */  
    memmove(&images->legacy_hdr_os_copy, hdr,  sizeof(image_header_t));  
      
    /* save pointer to image header */  
    images->legacy_hdr_os = hdr;  
      
    images->legacy_hdr_valid = 1;  
    bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);  
    break;  
    

      

     

    首先来说明一下image header的格式,在代码中由image_header_t代表,如下:

    typedef struct image_header {  
        __be32      ih_magic;   /* Image Header Magic Number    */   
        __be32      ih_hcrc;    /* Image Header CRC Checksum    */  
        __be32      ih_time;    /* Image Creation Timestamp */  
        __be32      ih_size;    /* Image Data Size      */  
        __be32      ih_load;    /* Data  Load  Address      */  
        __be32      ih_ep;      /* Entry Point Address      */  
        __be32      ih_dcrc;    /* Image Data CRC Checksum  */  
        uint8_t     ih_os;      /* Operating System     */  
        uint8_t     ih_arch;    /* CPU architecture     */  
        uint8_t     ih_type;    /* Image Type           */  
        uint8_t     ih_comp;    /* Compression Type     */  
        uint8_t     ih_name[IH_NMLEN];  /* Image Name       */  
    } image_header_t;  
    

      

    genimg_get_format检查img header的头4个字节,代表image的类型,有2种,legacy和FIT,这里使用的legacy,头4个字节为0x27051956。

    image_get_kernel则会来计算header的crc是否正确,然后获取image的type,根据type来获取os的len和data起始地址。

    最后将hdr的数据拷贝到images的legacy_hdr_os_copy,防止kernel image在解压是覆盖掉hdr数据,保存hdr指针到legacy_hdr_os中,置位legacy_hdr_valid。

    从boot_get_kernel中返回到bootm_find_os,继续往下:

    switch (genimg_get_format(os_hdr)) {  
    case IMAGE_FORMAT_LEGACY:  
        images.os.type = image_get_type(os_hdr);  
        images.os.comp = image_get_comp(os_hdr);  
        images.os.os = image_get_os(os_hdr);  
      
        images.os.end = image_get_image_end(os_hdr);  
        images.os.load = image_get_load(os_hdr);  
    。。。

      

    根据hdr获取os的type,comp,os,end,load addr。

     
    /* find kernel entry point */  
    if (images.legacy_hdr_valid) {  
        images.ep = image_get_ep(&images.legacy_hdr_os_copy);  
    } else {  
        puts("Could not find kernel entry point!
    ");  
        return 1;  
    }  
      
    if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {  
        images.os.load = images.os.image_start;  
        images.ep += images.os.load;  
    }  
      
    images.os.start = (ulong)os_hdr;  
    

      

    获取os的start。
    到这里bootm_find_os就结束了,主要工作是根据image的hdr来做crc,获取一些基本的os信息到images结构体中。

    回到do_bootm_states中接下来调用bootm_find_other,

    5 第三阶段:bootm_find_other
    该函数大体看一下,对于legacy类型的image,获取查询是否有ramdisk,此处我们没有用单独的ramdisk,ramdisk是直接编译到kernel image中的。

    回到do_bootm_states中接下来会调用bootm_load_os。

    6 第四阶段:bootm_load_os

    static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,  
            int boot_progress)  
    {  
        image_info_t os = images->os;  
        uint8_t comp = os.comp;  
        ulong load = os.load;  
        ulong blob_start = os.start;  
        ulong blob_end = os.end;  
        ulong image_start = os.image_start;  
        ulong image_len = os.image_len;  
        __maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN;  
        int no_overlap = 0;  
        void *load_buf, *image_buf;  
    #if defined(CONFIG_LZMA) || defined(CONFIG_LZO)  
        int ret;  
    #endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */  
      
        const char *type_name = genimg_get_type_name(os.type);  
      
        load_buf = map_sysmem(load, unc_len);  
        image_buf = map_sysmem(image_start, image_len);  
        switch (comp) {  
        case IH_COMP_NONE:  
            if (load == blob_start || load == image_start) {  
                printf("   XIP %s ... ", type_name);  
                no_overlap = 1;  
            } else {  
                printf("   Loading %s ... ", type_name);  
                memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);  
            }  
            *load_end = load + image_len;  
            break;  
    
    #ifdef CONFIG_GZIP  
        case IH_COMP_GZIP:  
            printf("   Uncompressing %s ... ", type_name);  
            if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {  
                puts("GUNZIP: uncompress, out-of-mem or overwrite "  
                    "error - must RESET board to recover
    ");  
                if (boot_progress)  
                    bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);  
                return BOOTM_ERR_RESET;  
            }  
      
            *load_end = load + image_len;  
            break;  
    #endif /* CONFIG_GZIP */  
    

      

     

    load_buf是之前find_os是根据hdr获取的load addr,image_buf是find_os获取的image的开始地址(去掉64字节头)。

    之后则是根据hdr的comp类型来解压拷贝image到load addr上。

    这里就需要注意,kernel选项的压缩格式必须在uboot下打开相应的解压缩支持,或者就不进行压缩

    这里还有一点,load addr与image add是否可以重叠,看代码感觉是可以重叠的,还需要实际测试一下。

    回到do_bootm_states,接下来根据os从boot_os数组中获取到了相应的os boot func,这里是linux,则是do_bootm_linux。后面代码如下:

    /* Call various other states that are not generally used */  
    if (!ret && (states & BOOTM_STATE_OS_CMDLINE))  
        ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);  
    if (!ret && (states & BOOTM_STATE_OS_BD_T))  
        ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);  
    if (!ret && (states & BOOTM_STATE_OS_PREP))  
        ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);  
      
    /* Check for unsupported subcommand. */  
    if (ret) {  
        puts("subcommand not supported
    ");  
        return ret;  
    }  
      
    /* Now run the OS! We hope this doesn't return */  
    if (!ret && (states & BOOTM_STATE_OS_GO))  
        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO, images, boot_fn);  
    

      

    这时do_bootm最后的代码,如果正常,boot kernel之后就不应该回来了。states中定义了BOOTM_STATE_OS_PREP(对于mips处理器会使用BOOTM_STATE_OS_CMDLINE),调用do_bootm_linux,如下:

    int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images)  
    {  
        /* No need for those on ARM */  
        if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)  
            return -1;   
      
        if (flag & BOOTM_STATE_OS_PREP) {  
            boot_prep_linux(images);  
            return 0;  
        }     
      
        if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {  
            boot_jump_linux(images, flag);  
            return 0;  
        }     
      
        boot_prep_linux(images);  
        boot_jump_linux(images, flag);  
        return 0;  
    }  
    

      

    do_bootm_linux实现跟do_bootm类似,也是根据flag分阶段运行subcommand,这里会调到boot_prep_linux。

    7 第五阶段:boot_prep_linux

    该函数作用是为启动后的kernel准备参数,这个函数我们在第三部分uboot如何传参给kernel再仔细分析一下

    boot_prep_linux完成返回到do_bootm_states后接下来就是最后一步了。执行boot_selected_os调用do_bootm_linux,flag为BOOTM_STATE_OS_GO,则调用boot_jump_linux

    8 第六阶段:boot_jump_linux

    unsigned long machid = gd->bd->bi_arch_number;  
    char *s;  
    void (*kernel_entry)(int zero, int arch, uint params);  
    unsigned long r2;  
    int fake = (flag & BOOTM_STATE_OS_FAKE_GO);  
      
    kernel_entry = (void (*)(int, int, uint))images->ep;  
      
    s = getenv("machid");  
    if (s) {  
        strict_strtoul(s, 16, &machid);  
        printf("Using machid 0x%lx from environment
    ", machid);  
    }  
      
    debug("## Transferring control to Linux (at address %08lx)"   
        "...
    ", (ulong) kernel_entry);  
    bootstage_mark(BOOTSTAGE_ID_RUN_OS);  
    announce_and_cleanup(fake);  
      
    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)  
        r2 = (unsigned long)images->ft_addr;  
    else  
        r2 = gd->bd->bi_boot_params;  
      
    if (!fake)  
        kernel_entry(0, machid, r2);  
    

      

    boot_jump_linux主体函数如上

    获取gd->bd->bi_arch_number为machid,如果有env则用env的machid,kernel_entry为之前由hdr获取的ep,也就是内核的入口地址。

    fake为0,直接调用kernel_entry,参数1为0,参数2为machid,参数3为bi_boot_params。

    这之后就进入了kernel的执行流程启动,就不会再回到uboot

    这整个boot过程中bootm_images_t一直作为对image信息的全局存储结构。

    三 uboot如何传参给kernel

    uboot下的传参机制就直接来分析boot_prep_linux函数就可以了,如下:

    static void boot_prep_linux(bootm_headers_t *images)  
    {  
        char *commandline = getenv("bootargs");  
      
        if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) {  
    #ifdef CONFIG_OF_LIBFDT  
            debug("using: FDT
    ");  
            if (image_setup_linux(images)) {  
                printf("FDT creation failed! hanging...");  
                hang();  
            }  
    #endif  
        } else if (BOOTM_ENABLE_TAGS) {  
            debug("using: ATAGS
    ");  
            setup_start_tag(gd->bd);  
            if (BOOTM_ENABLE_SERIAL_TAG)  
                setup_serial_tag(¶ms);  
            if (BOOTM_ENABLE_CMDLINE_TAG)  
                setup_commandline_tag(gd->bd, commandline);  
            if (BOOTM_ENABLE_REVISION_TAG)  
                setup_revision_tag(¶ms);  
            if (BOOTM_ENABLE_MEMORY_TAGS)  
                setup_memory_tags(gd->bd);  
            if (BOOTM_ENABLE_INITRD_TAG) {  
                if (images->rd_start && images->rd_end) {  
                    setup_initrd_tag(gd->bd, images->rd_start,images->rd_end);  
                }  
            }  
            setup_board_tags(¶ms);  
            setup_end_tag(gd->bd);  
        } else {  
            printf("FDT and ATAGS support not compiled in - hanging
    ");  
            hang();  
        }  
        do_nonsec_virt_switch();  
    }  
    

      

    首先获取出环境变量bootargs,这就是要传递给kernel的参数。
    在配置文件中定义了CONFIG_CMDLINE_TAG以及CONFIG_SETUP_MEMORY_TAGS,根据arch/arm/include/asm/bootm.h,则会定义BOOTM_ENABLE_TAGS,首先调用setup_start_tag,如下:

     static void setup_start_tag (bd_t *bd)  
    {         
        params = (struct tag *)bd->bi_boot_params;  
              
        params->hdr.tag = ATAG_CORE;  
        params->hdr.size = tag_size (tag_core);  
                  
        params->u.core.flags = 0;  
        params->u.core.pagesize = 0;  
        params->u.core.rootdev = 0;  
                  
        params = tag_next (params);  
    }     

    params是一个全局静态变量用来存储要传给kernel的参数,这里bd->bi_boot_params的值赋给params,因此bi_boot_params需要进行初始化,从而将params放在一个合理的内存区域。
    这里params为struct tag的结构,如下:

    struct tag {  
        struct tag_header hdr;  
        union {  
            struct tag_core     core;  
            struct tag_mem32    mem;  
            struct tag_videotext    videotext;  
            struct tag_ramdisk  ramdisk;  
            struct tag_initrd   initrd;  
            struct tag_serialnr serialnr;  
            struct tag_revision revision;  
            struct tag_videolfb videolfb;  
            struct tag_cmdline  cmdline;  
      
            /* 
             * Acorn specific 
             */  
            struct tag_acorn    acorn;  
      
            /* 
             * DC21285 specific 
             */  
            struct tag_memclk   memclk;  
        } u;  
    };  
    

      

    tag包括hdr和各种类型的tag_*,hdr来标志当前的tag是哪种类型的tag。
    setup_start_tag是初始化了第一个tag,是tag_core类型的tag。最后调用tag_next跳到第一个tag末尾,为下一个tag做准备。

    回到boot_prep_linux,接下来调用setup_commandline_tag,如下:

    static void setup_commandline_tag(bd_t *bd, char *commandline)  
    {             
        char *p;  
                  
        if (!commandline)  
            return;  
              
        /* eat leading white space */  
        for (p = commandline; *p == ' '; p++);  
                  
        /* skip non-existent command lines so the kernel will still 
         * use its default command line. 
         */       
        if (*p == '')  
            return;  
              
        params->hdr.tag = ATAG_CMDLINE;  
        params->hdr.size =  
            (sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2;  
      
        strcpy (params->u.cmdline.cmdline, p);  
      
        params = tag_next (params);  
    }  
    

      

    该函数设置第二个tag的hdr.tag为ATAG_CMDLINE,然后拷贝cmdline到tags的cmdline结构体中,跳到下一个tag。

    回到boot_prep_linux,调用setup_memory_tag,如下:

    static void setup_memory_tags(bd_t *bd)  
    {         
        int i;    
              
        for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {  
            params->hdr.tag = ATAG_MEM;  
            params->hdr.size = tag_size (tag_mem32);  
                      
            params->u.mem.start = bd->bi_dram[i].start;  
            params->u.mem.size = bd->bi_dram[i].size;  
              
            params = tag_next (params);  
        }     
    } 
    

      

    过程类似,将第三个tag设为ATAG_MEM,将mem的start,size保存在此处,如果有多片ram(CONFIG_NR_DRAM_BANKS > 1),则将下一个tag保存下一片ram的信息,依次类推。

    回到boot_prep_linux中,调用setup_board_tags,这个函数是__weak属性,我们可以在自己的板级文件中去实现来保存跟板子相关的参数,如果没有实现,则是空函数。

    最后调用setup_end_tags,如下:

    static void setup_end_tag(bd_t *bd)  
    {         
        params->hdr.tag = ATAG_NONE;  
        params->hdr.size = 0;  
    }         
    

      

    最后将最末尾的tag设置为ATAG_NONE,标志tag结束。


    这样整个参数的准备就结束了,最后在调用boot_jump_linux时会将tags的首地址也就是bi_boot_params传给kernel,供kernel来解析这些tag,kernel如何解析看第四部分kenrel如何找到并解析参数

    总结一下,uboot将参数以tag数组的形式布局在内存的某一个地址,每个tag代表一种类型的参数,首尾tag标志开始和结束,首地址传给kernel供其解析。

    四 kernel如何找到并解析参数

    uboot在调用boot_jump_linux时最后kernel_entry(0, machid, r2);

    按照二进制规范eabi,machid存在寄存器r1,r2即tag的首地址存在寄存器r2.

    查看kernel的入口函数,在arch/arm/kernel/head.S,中可以看到如下一段汇编:

    /*   
     * r1 = machine no, r2 = atags or dtb, 
     * r8 = phys_offset, r9 = cpuid, r10 = procinfo 
     */  
    bl  __vet_atags  
    

      

    可以看出kernel刚启动会调用__vet_atags来处理uboot传来的参数,如下:

    __vet_atags:  
        tst r2, #0x3            @ aligned?  
        bne 1f  
      
        ldr r5, [r2, #0]  
    #ifdef CONFIG_OF_FLATTREE  
        ldr r6, =OF_DT_MAGIC        @ is it a DTB?  
        cmp r5, r6  
        beq 2f  
    #endif  
        cmp r5, #ATAG_CORE_SIZE     @ is first tag ATAG_CORE?  
        cmpne   r5, #ATAG_CORE_SIZE_EMPTY  
        bne 1f  
        ldr r5, [r2, #4]  
        ldr r6, =ATAG_CORE  
        cmp r5, r6  
        bne 1f  
      
    2:  mov pc, lr              @ atag/dtb pointer is ok  
      
    1:  mov r2, #0  
        mov pc, lr  
    ENDPROC(__vet_atags)  
    

      

    主要是对tag进行了一个简单的校验,查看tag头4个字节(tag_core的size)和第二个4字节(tag_core的type)。

    之后对参数的真正分析处理是在start_kernel的setup_arch中,在arch/arm/kernel/setup.c中,如下:

    void __init setup_arch(char **cmdline_p)  
    {  
        struct machine_desc *mdesc;  
      
        setup_processor();  
        mdesc = setup_machine_fdt(__atags_pointer);  
        if (!mdesc)  
            mdesc = setup_machine_tags(machine_arch_type);  
        machine_desc = mdesc;  
        machine_name = mdesc->name;  
      
    #ifdef CONFIG_ZONE_DMA  
        if (mdesc->dma_zone_size) {  
            extern unsigned long arm_dma_zone_size;  
            arm_dma_zone_size = mdesc->dma_zone_size;  
        }             
    #endif                   
        if (mdesc->restart_mode)  
            reboot_setup(&mdesc->restart_mode);  
          
        init_mm.start_code = (unsigned long) _text;  
        init_mm.end_code   = (unsigned long) _etext;  
        init_mm.end_data   = (unsigned long) _edata;  
        init_mm.brk    = (unsigned long) _end;  
      
        /* populate cmd_line too for later use, preserving boot_command_line */  
        strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);  
        *cmdline_p = cmd_line;  
      
        parse_early_param();  

    关键函数是setup_machine_tags,如下:

    static struct machine_desc * __init setup_machine_tags(unsigned int nr)  
    {  
        struct tag *tags = (struct tag *)&init_tags;  
        struct machine_desc *mdesc = NULL, *p;  
        char *from = default_command_line;  
    。。。。  
        if (__atags_pointer)  
            tags = phys_to_virt(__atags_pointer);  
        else if (mdesc->atag_offset)  
            tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);  
      
    。。。。。  
        if (tags->hdr.tag == ATAG_CORE) {  
            if (meminfo.nr_banks != 0)  
                squash_mem_tags(tags);  
            save_atags(tags);  
            parse_tags(tags);  
        }  
      
        /* parse_early_param needs a boot_command_line */  
        strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);  
    。。。  
    }  

    首先回去获取tags的首地址,如果收个tag是ATAG_CORE类型,则会调用save_atags拷贝一份tags,最后调用parse_tags来分析这个tag list,如下:

    static int __init parse_tag(const struct tag *tag)  
    {  
        extern struct tagtable __tagtable_begin, __tagtable_end;  
        struct tagtable *t;  
      
        for (t = &__tagtable_begin; t < &__tagtable_end; t++)  
            if (tag->hdr.tag == t->tag) {  
                t->parse(tag);  
                break;  
            }  
          
        return t < &__tagtable_end;  
    }     
              
    /*   
     * Parse all tags in the list, checking both the global and architecture 
     * specific tag tables. 
     */           
    static void __init parse_tags(const struct tag *t)  
    {         
        for (; t->hdr.size; t = tag_next(t))  
            if (!parse_tag(t))  
                printk(KERN_WARNING  
                    "Ignoring unrecognised tag 0x%08x
    ",  
                    t->hdr.tag);  
    }     

    遍历tags list,找到在tagstable中匹配的处理函数(hdr.tag一致),来处理响应的tag。

    这个tagtable的处理函数是在调用__tagtable来注册的,如下:

    static int __init parse_tag_cmdline(const struct tag *tag)  
    {  
    #if defined(CONFIG_CMDLINE_EXTEND)  
        strlcat(default_command_line, " ", COMMAND_LINE_SIZE);  
        strlcat(default_command_line, tag->u.cmdline.cmdline,  
            COMMAND_LINE_SIZE);  
    #elif defined(CONFIG_CMDLINE_FORCE)  
        pr_warning("Ignoring tag cmdline (using the default kernel command line)
    ");  
    #else  
        strlcpy(default_command_line, tag->u.cmdline.cmdline,  
            COMMAND_LINE_SIZE);  
    #endif  
        return 0;  
    }  
      
    __tagtable(ATAG_CMDLINE, parse_tag_cmdline);  

    看这个对cmdline类型的tag的处理,就是将tag中的cmdline拷贝到default_command_line中。还有其他如mem类型的参数也会注册这个处理函数,来匹配处理响应的tag。这里就先以cmdline的tag为例。

    这样遍历并处理完tags list之后回到setup_machine_tags,将from(即default_command_line)中的cmdline拷贝到boot_command_line,

    最后返回到setup_arch中,

    /* populate cmd_line too for later use, preserving boot_command_line */  
    strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);  
    *cmdline_p = cmd_line;  
      
    parse_early_param();  

    将boot_command_line拷贝到start_kernel给setup_arch的cmdline_p中,这里中间拷贝的boot_command_line是给parse_early_param来做一个早期的参数分析的。

    到这里kernel就完全接收并分析完成了uboot传过来的args。

    简单的讲,uboot利用函数指针及传参规范,它将

    l   R0: 0x0
    l   R1: 机器号
    l   R2: 参数地址
    三个参数传递给内核。

    其中,R2寄存器传递的是一个指针,这个指针指向一个TAG区域。

    UBOOT和Linux内核之间正是通过这个扩展了的TAG区域来进行复杂参数的传递,如 command line,文件系统信息等等,用户也可以扩展这个TAG来进行更多参数的传递。TAG区域的首地址,正是R2的值。

  • 相关阅读:
    输入输出重定向
    MarkdownPad 2中编辑
    (转)Maven最佳实践:划分模块
    (转)maven设置内存
    我收集的sonar参考资料
    (转)linux service理解
    制作service服务,shell脚本小例子(来自网络)
    6
    4
    5
  • 原文地址:https://www.cnblogs.com/cyyljw/p/11052222.html
Copyright © 2011-2022 走看看