题目链接:https://www.luogu.org/problemnew/show/P1002
题目还算良心,提醒了结果可能很大,确实爆了int范围,
这是一开始写的版本,用递归做的,先给地图做标记,每到一个点,这个点可以走的话,选择向下走还是向右走,但是会超时。
#include <iostream> using namespace std; int sign[23][23]; int M, N; int res = 0; void move(int i, int j) { if (i == N && j == M) { res++; return; } if (i < N&&sign[i + 1][j] != 1) move(i + 1, j); if (j < M&&sign[i][j + 1] != 1) move(i, j + 1); } void make_mark(int x, int y) { sign[x - 1][y - 2] = 1; sign[x - 1][y + 2] = 1; sign[x + 1][y + 2] = 1; sign[x + 1][y - 2] = 1; sign[x + 2][y - 1] = 1; sign[x + 2][y + 1] = 1; sign[x - 2][y - 1] = 1; sign[x - 2][y + 1] = 1; sign[x][y] = 1; } int main() { int x, y; cin >> N >> M >> x >> y; make_mark(x, y); move(0, 0); cout << res << endl; return 0; }
然后改成了动态规划,手画个表就明白了,这是不考虑“马”的因素,到每个点的步数:
然后代码:
#include <iostream> using namespace std; int maze[25][25]; long long dp[25][25]; int dis[][2] = { {-1,-2},{-1,2},{1,2},{1,-2},{2,-1},{2,1},{-2,-1},{-2,1} }; int M, N, x, y; int main() { cin >> N >> M >> x >> y; N++; M++; x++; y++;//起点用(1,1)做,后面不会出现下标越界情况,所有点都+1 maze[x][y] = 1; for (int i = 0; i < 8; i++) { //标记马的位置,全局数组多开了几个,可以不做越界判断 maze[x + dis[i][0]][y + dis[i][1]] = 1; } dp[0][1] = 1;//使得在循环内能够正常初始化 起点 (1,1) for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) { if (maze[i][j])continue; dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } cout << dp[N][M] << endl; return 0; }