zoukankan      html  css  js  c++  java
  • Word Embeddings: Encoding Lexical Semantics

    Word Embeddings: Encoding Lexical Semantics

    Word Embeddings in Pytorch

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    torch.manual_seed(1)
    
    word_to_ix = {"hello": 0, "world": 1}
    embeds = nn.Embedding(2, 5)  # 2 words in vocab, 5 dimensional embeddings
    lookup_tensor = torch.tensor([word_to_ix["hello"]], dtype=torch.long)
    hello_embed = embeds(lookup_tensor)
    print(hello_embed)

    Out:

    tensor([[ 0.6614,  0.2669,  0.0617,  0.6213, -0.4519]],
           grad_fn=<EmbeddingBackward>)

    An Example: N-Gram Language Modeling

    CONTEXT_SIZE = 2
    EMBEDDING_DIM = 10
    # We will use Shakespeare Sonnet 2
    test_sentence = """When forty winters shall besiege thy brow,
    And dig deep trenches in thy beauty's field,
    Thy youth's proud livery so gazed on now,
    Will be a totter'd weed of small worth held:
    Then being asked, where all thy beauty lies,
    Where all the treasure of thy lusty days;
    To say, within thine own deep sunken eyes,
    Were an all-eating shame, and thriftless praise.
    How much more praise deserv'd thy beauty's use,
    If thou couldst answer 'This fair child of mine
    Shall sum my count, and make my old excuse,'
    Proving his beauty by succession thine!
    This were to be new made when thou art old,
    And see thy blood warm when thou feel'st it cold.""".split()
    # we should tokenize the input, but we will ignore that for now
    # build a list of tuples.  Each tuple is ([ word_i-2, word_i-1 ], target word)
    trigrams = [([test_sentence[i], test_sentence[i + 1]], test_sentence[i + 2])
                for i in range(len(test_sentence) - 2)]
    
    vocab = set(test_sentence) #the element in set is distinct
    word_to_ix = {word: i for i, word in enumerate(vocab)}
    
    class NGramLanguageModeler(nn.Module):
    
        def __init__(self, vocab_size, embedding_dim, context_size):
            super(NGramLanguageModeler, self).__init__()
            self.embeddings = nn.Embedding(vocab_size, embedding_dim)
            self.linear1 = nn.Linear(context_size * embedding_dim, 128)
            self.linear2 = nn.Linear(128, vocab_size)
    
        def forward(self, inputs):
            embeds = self.embeddings(inputs).view((1, -1))
            out = F.relu(self.linear1(embeds))
            out = self.linear2(out)
            log_probs = F.log_softmax(out, dim=1)
            return log_probs
    
    losses = []
    loss_function = nn.NLLLoss()
    model = NGramLanguageModeler(len(vocab), EMBEDDING_DIM, CONTEXT_SIZE)
    optimizer = optim.SGD(model.parameters(), lr=0.001)
    
    for epoch in range(10):
        total_loss = 0
        for context, target in trigrams:
    
            context_idxs = torch.tensor([word_to_ix[w] for w in context], dtype=torch.long)
    
            model.zero_grad()
    
            log_probs = model(context_idxs)
          
            loss = loss_function(log_probs, torch.tensor([word_to_ix[target]], dtype=torch.long))
           
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
        losses.append(total_loss)
    print(losses)  

    Exercise: Computing Word Embeddings: Continuous Bag-of-Words

    CONTEXT_SIZE=2
    raw_text= """We are about to study the idea of a computational process.
    Computational processes are abstract beings that inhabit computers.
    As they evolve, processes manipulate other abstract things called data.
    The evolution of a process is directed by a pattern of rules
    called a program. People create programs to direct processes. In effect,
    we conjure the spirits of the computer with our spells.""".split()
    
    
    # By deriving a set from `raw_text`, we deduplicate the array
    vocab = set(raw_text)
    vocab_size = len(vocab)
    
    word_to_ix={word:i for i,word in enumerate(vocab)}
    data=[]
    for i in range(2,len(raw_text)-2):
        context=[raw_text[i-2],raw_text[i-1],raw_text[i+1],raw_text[i+2]]
        target=raw_text[i]
        data.append((context,target))
    print(data[:5])
    
    class CBOW(nn.Module):
        def __init__(self):
            pass
        
        def forward(self,inputs):
            pass
    
    def make_context_vector(context,word_to_ix):
        idxs=[word_to_ix[w] for w in context]
        return torch.tensor(idxs,dtype=torch.long)
    
    make_context_vector(data[0][0],word_to_ix)
  • 相关阅读:
    linux下mysql的安装
    linux下mysql设置主从
    linux下安装jdk8并且配置环境变量
    C#实现rabbitmq 延迟队列功能
    对angular.js的一点理解
    angular.js的路由和模板在asp.net mvc 中的使用
    通过Web Api 和 Angular.js 构建单页面的web 程序
    Orchard运用
    Orchard运用
    Orchard运用
  • 原文地址:https://www.cnblogs.com/czhwust/p/wordembeddings.html
Copyright © 2011-2022 走看看