题目背景
Generic Cow Protests, 2011 Feb
题目描述
约翰家的N 头奶牛正在排队游行抗议。一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正可负。
约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几个小组,每个抗议小组的理智度之和必须大于或等于零。奶牛的队伍已经固定了前后顺序,所以不能交换它们的位置,所以分在一个小组里的奶牛必须是连续位置的。除此之外,分组多少组,每组分多少奶牛,都没有限制。
约翰想知道有多少种分组的方案,由于答案可能很大,只要输出答案除以1000000009 的余数即可。
输入输出格式
输入格式:
• 第一行:单个整数N,1 ≤ N ≤ 100000
• 第二行到第N + 1 行:第i + 1 行有一个整数Ai,−10^5 ≤ Ai ≤ 10^5
输出格式:
单个整数:表示分组方案数模1000000009 的余数
输入输出样例
说明
解释:如果分两组,可以把前三头分在一组,或把后三头分在一组;如果分三组,可以把中间两头分在一组,第一和最后一头奶牛自成一组;最后一种分法是把四头奶牛分在同一组里。
#include<bits/stdc++.h> #define REP(i, a, b) for(int i = (a); i <= (b); ++ i) #define REP(j, a, b) for(int j = (a); j <= (b); ++ j) #define PER(i, a, b) for(int i = (a); i >= (b); -- i) using namespace std; typedef long long ll; const int maxn=1e5+5; const ll mod=1000000009; template <class T> inline void rd(T &ret){ char c; ret = 0; while ((c = getchar()) < '0' || c > '9'); while (c >= '0' && c <= '9'){ ret = ret * 10 + (c - '0'), c = getchar(); } } queue<int>q; int vis[maxn],p[maxn],n,dp[maxn]; int main() { q.push(0); dp[0]=1; rd(n); REP(i,1,n)scanf("%d",&p[i]); while(!q.empty()){ int cur=q.front(); q.pop(); ll tmp=0; REP(i,cur+1,n){ tmp+=p[i]; if(tmp>=0){ dp[i]=(dp[i]+dp[cur])%mod; if(!vis[i]){ q.push(i); vis[i]=1; } } } } cout<<dp[n]<<endl; return 0; }