zoukankan      html  css  js  c++  java
  • Room and Moor

    11916: Room and Moor

    时间限制: 6 Sec  内存限制: 256 MB
    提交: 2  解决: 2
    [提交] [状态] [命题人:外部导入]

    题目描述

    PM Room defines a sequence A = {A1, A2,..., AN}, each of which is either 0 or 1. In order to beat him, programmer Moor has to construct another sequence B = {B1, B2,... , BN} of the same length, which satisfies that:

    输入

    The input consists of multiple test cases. The number of test cases T(T<=100) occurs in the first line of input.

    For each test case:
    The first line contains a single integer N (1<=N<=100000), which denotes the length of A and B.
    The second line consists of N integers, where the ith denotes Ai.

    输出

    Output the minimal f (A, B) when B is optimal and round it to 6 decimals.

    样例输入

    4
    9
    1 1 1 1 1 0 0 1 1
    9
    1 1 0 0 1 1 1 1 1
    4
    0 0 1 1
    4
    0 1 1 1

    样例输出

    1.428571
    1.000000
    0.000000
    0.000000

     

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 3e5 + 10;
    const ll mod = 1e9 + 7;
    const double eps = 1e-7;
    struct node {
        int cnt0, cnt1;
        double val;
    } v[maxn];
    int T, n, cnt;
    int c[maxn];
    
    int main() {
        //freopen("1.txt", "r", stdin);
        stack<node> sk;
        scanf("%d", &T);
        while (T--) {
            scanf("%d", &n);
            for (register int i = 1; i <= n; ++i)scanf("%d", c + i);
            int l = 1, r = n;
            while (c[l] == 0 && l <= n)l++;
            while (c[r] == 1 && r >= 1)r--;
            if (l > r) {
                printf("0.000000
    ");
                continue;
            }
            cnt = 0;
            for (register int i = l; i <= r;) {
                int n0 = 0, n1 = 0;
                while (c[i] == 1 && i <= r)i++, n1++;
                while (c[i] == 0 && i <= r)i++, n0++;
                v[++cnt].cnt0 = n0;
                v[cnt].cnt1 = n1;
                v[cnt].val = 1.0 * n1 / (double) (n0 + n1);
                //sk.push(v[cnt]);
            }
            //while (!sk.empty())sk.pop();
            for (register int i = 1; i <= cnt; ++i) {
                if (sk.empty())sk.push(v[i]);
                else {
                    node last = sk.top();
                    if (last.val <= v[i].val) {
                        sk.push(v[i]);
                    } else {
                        node cur = v[i];
                        while (true) {
                            last = sk.top();
                            if (cur.val < last.val) {
                                cur.cnt0 += last.cnt0;
                                cur.cnt1 += last.cnt1;
                                cur.val = 1.0 * cur.cnt1 / (double) (cur.cnt0 + cur.cnt1);
                                sk.pop();
                            } else {
                                sk.push(cur);
                                break;
                            }
                            if (sk.empty()) {
                                sk.push(cur);
                                break;
                            }
                        }
                    }
                }
            }
            node o;
            double res = 0;
            while (!sk.empty()) {
                o = sk.top();
                //cout<<"debug o.val="<<o.val<<' '<<"debug o.cnt0="<<o.cnt0<<' '<<"debug o.cnt1="<<o.cnt1<<endl;
                sk.pop();
                res += o.val * o.val * o.cnt0 + (1.0 - o.val) * (1.0 - o.val) * o.cnt1;
            }
            printf("%.6f
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    Ios插件开发
    React-Native学习指南
    APP测试基本流程
    iOS开发-由浅至深学习block
    你真的会用UITableView嘛
    iOS系统右滑返回全局控制方案
    优化UITableViewCell高度计算的那些事
    UITableViewCell高度自适应探索--AutoLayout结合Frame
    UITableView优化技巧
    页面间跳转的性能优化(一)
  • 原文地址:https://www.cnblogs.com/czy-power/p/11336551.html
Copyright © 2011-2022 走看看