zoukankan      html  css  js  c++  java
  • Let Them Slide

    E. Let Them Slide
    time limit per test
    4 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given nn arrays that can have different sizes. You also have a table with ww columns and nn rows. The ii-th array is placed horizontally in the ii-th row. You can slide each array within its row as long as it occupies several consecutive cells and lies completely inside the table.

    You need to find the maximum sum of the integers in the jj-th column for each jj from 11 to ww independently.

    Optimal placements for columns 11, 22 and 33 are shown on the pictures from left to right.

    Note that you can exclude any array out of a column provided it remains in the window. In this case its value is considered to be zero.

    Input

    The first line contains two integers nn (1n1061≤n≤106) and ww (1w1061≤w≤106) — the number of arrays and the width of the table.

    Each of the next nn lines consists of an integer lili (1liw1≤li≤w), the length of the ii-th array, followed by lili integers ai1,ai2,,ailiai1,ai2,…,aili (109aij109−109≤aij≤109) — the elements of the array.

    The total length of the arrays does no exceed 106106.

    Output

    Print ww integers, the ii-th of them should be the maximum sum for column ii.

    Examples
    input
    Copy
    3 3
    3 2 4 8
    2 2 5
    2 6 3
    
    output
    Copy
    10 15 16 
    
    input
    Copy
    2 2
    2 7 8
    1 -8
    
    output
    Copy
    7 8 
    
    Note

    Illustration for the first example is in the statement.

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 1e6 + 10000;
    int n, w;
    vector<ll> e[maxn];
    ll tag[maxn], tot[maxn];
    
    int main() {
        //freopen("1.txt", "r", stdin);
        scanf("%d%d", &n, &w);
        for (register int i = 1, l; i <= n; ++i) {
            scanf("%d", &l);
            //e[i].resize(l + 100);
            e[i].emplace_back(0);
            ll x;
            for (register int j = 1; j <= l; ++j) {
                scanf("%lld", &x);
                e[i].emplace_back(x);
            }
            ll mx = max(*max_element(e[i].begin(), e[i].end()), 1ll * 0);
            //printf("debug mx = %d
    ", mx);
            if (2 * l <= w) {
                ll head_max = 0;
                for (register int j = 1; j <= l; ++j) {
                    head_max = max(head_max, e[i][j]);
                    tot[j] += head_max;
                }
                ll tail_max = 0;
                for (register int j = l, cur = w; j >= 1; --j, --cur) {
                    tail_max = max(tail_max, e[i][j]);
                    tot[cur] += tail_max;
                }
                tag[l + 1] += mx;
                tag[w - l + 1] -= mx;
            } else {
                multiset<ll> cap;
                for (register int j = 1, k = 1; j <= w; ++j) {
                    if (j <= l)cap.insert(e[i][j]);
                    ll cur_max = *cap.rbegin();
                    if (j > l || j < w - l + 1)cur_max = max(cur_max, 1ll * 0);
                    tot[j] += cur_max;
                    //printf("debug k = %d
    ",k);
                    if (j - k + 1 == w - l + 1) {
                        //printf("debug tot[%d] = %d
    ",j,tot[j]);
                        //if(cap.find(e[i][k])!=cap.end()){
                        cap.erase(cap.find(e[i][k]));
                        ++k;
                        //}
                    }
                }
            }
        }
        ll cur = 0;
        for (register int i = 1; i <= w; ++i) {
            cur += tag[i];
            printf("%lld%c", cur + tot[i], (i == w) ? '
    ' : ' ');
        }
        return 0;
    }
  • 相关阅读:
    poj 3277 City Horizon (线段树 扫描线 矩形面积并)
    HDU 1255 覆盖的面积 (扫描线 线段树 离散化 矩形面积并)
    Codeforces Round #260 (Div. 2)
    poj 1151 Atlantis (离散化 + 扫描线 + 线段树 矩形面积并)
    CF1237F Balanced Domino Placements
    CF954H Path Counting
    AT2395 [ARC071C] TrBBnsformBBtion
    AT2400 [ARC072B] Alice&Brown
    AT2401 [ARC072C] Alice in linear land
    [国家集训队]阿狸和桃子的游戏
  • 原文地址:https://www.cnblogs.com/czy-power/p/11410798.html
Copyright © 2011-2022 走看看