zoukankan      html  css  js  c++  java
  • Cake Robbery

    Cake Robbery
    Time Limit: 2000 msMemory Limit: 65536 KB

    As usual, Alice finishes her delicious cake at noon. Unfortunately, the smell of cake beckoned hungry Bob, and he decided to rob one piece of cake.

    The cake is a convex polygon with N edges. At the beginning, Bob cut it along the diagonals. After M cuts, Bob decided to rob the 'largest' piece of cake. Strangely, in Bob's opinion, the piece has the most number of edge is the biggest one.

    Please help Bob to find the 'largest' piece.

    Input

    There are multiple test cases (about 20).

    The first line of each test case contains two integer number NM (5 <= N <= 10000), indicating the number of point of the cake and the cut, respectively.

    The following M lines contain two integer x, y (1 <= x, y <= N), denoting the index of the starting and ending cut point. (the index of points mark from 1 to Nclockwise.)

    The input will guarantee that all of the cuts will not intersect inside the cake, but they may cross each other at the edge of cake, and Bob won't cut along the initial edge of the cake.

    Output

    Output the maximal size (most number of edges) of the piece which Bob will get.

    Sample Input

    7 2
    3 6
    7 2
    

    Sample Output

    4
    #include<bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 2e5 + 50;
    
    struct cake {
        int l, r;
    
        inline void get() {
            scanf("%d%d", &l, &r);
            if (l > r)swap(l, r);
        }
    
        bool operator<(const cake &cur) const {
            return r - l + 1 <= cur.r - cur.l + 1;
        }
    } o[maxn];
    
    
    struct tree {
        int l, r, cnt;
    } e[maxn];
    
    inline void build(int rt, int l, int r) {
        e[rt].l = l;
        e[rt].r = r;
        e[rt].cnt = r - l + 1;
        if (l == r)return;
        int mid = l + r >> 1;
        build(rt << 1, l, mid);
        build(rt << 1 | 1, mid + 1, r);
    }
    
    inline void update(int ql, int qr, int rt) {
        int l = e[rt].l;
        int r = e[rt].r;
        if (ql <= l && qr >= r) {
            e[rt].cnt = 0;
            return;
        }
        int mid = l + r >> 1;
        if (ql <= mid) {
            update(ql, qr, rt << 1);
        }
        if (qr > mid) {
            update(ql, qr, rt << 1 | 1);
        }
        e[rt].cnt = e[rt << 1].cnt + e[rt << 1 | 1].cnt;
    }
    
    
    int n, m;
    
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("1.txt", "r", stdin);
    #endif
        while (scanf("%d%d", &n, &m) != EOF) {
            for (register int i = 1; i <= m; ++i) {
                o[i].get();
            }
            sort(o + 1, o + 1 + m);
            build(1, 1, n);
            int res = 0, tot = e[1].cnt;
            for (register int i = 1; i <= m; ++i) {
                update(o[i].l + 1, o[i].r - 1, 1);
                res = max(res, tot - e[1].cnt + 2);
                tot = e[1].cnt;
            }
            res = max(res, e[1].cnt);
            printf("%d
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    Xcode4快速Doxygen文档注释 — 简明图文教程
    iOS6 旋转
    echart 判断数据是否为空
    echart tootip使用技巧
    下拉菜单自动向上或向下弹起
    前后台数据交互
    打包代码
    echart 设计宽度为百分比时,div撑不开
    无缝滚动(小鹏写)
    内置对象-Request对象
  • 原文地址:https://www.cnblogs.com/czy-power/p/11487982.html
Copyright © 2011-2022 走看看