zoukankan      html  css  js  c++  java
  • 分类网络

    """
    pytorch中数据标签默认的数据格式是LongTensor,即64位的整数
    """
    import torch
    from torch.autograd import Variable
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    # 制作数据
    n_data = torch.ones(100, 2)
    x0 = torch.normal(2*n_data, 1)      # x0的横纵坐标
    y0 = torch.zeros(100)               # x0对应的标签
    x1 = torch.normal(-2*n_data, 1)     # x1的横纵坐标
    y1 = torch.ones(100)                # x1对应的标签
    x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # shape (200, 2) FloatTensor = 32-bit floating
    y = torch.cat((y0, y1), ).type(torch.LongTensor)    # shape (200,) LongTensor = 64-bit integer
    
    x, y = Variable(x), Variable(y)
    
    # 以下显示出散点图
    # plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
    # plt.show()
    
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)
            self.out = torch.nn.Linear(n_hidden, n_output)
    
        def forward(self, x):
            x = F.relu(self.hidden(x))
            x = self.out(x)
            return x
    
    net = Net(n_feature=2, n_hidden=10, n_output=2)     # 定义网络
    print(net)  # 打印出网络结构
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
    loss_func = torch.nn.CrossEntropyLoss()  # 用于分类问题
    
    plt.ion()   # 设置为实时打印
    
    for t in range(100):
        out = net(x)                 # 输入x经过网络的前向传播,得到预测值,此时还不是概率
        loss = loss_func(out, y)     # 预测值在前,真实值在后
    
        optimizer.zero_grad()   # 清除上一次的梯度
        loss.backward()         # 反向传播,计算梯度
        optimizer.step()        # 优化梯度
    
        if t % 2 == 0:
            # 打印
            plt.cla()
            prediction = torch.max(F.softmax(out), 1)[1]
            pred_y = prediction.data.numpy().squeeze()
            target_y = y.data.numpy()
            plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
            accuracy = sum(pred_y == target_y)/200.
            plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    plt.ioff()
    plt.show()
  • 相关阅读:
    Lua/AHK socket tcp telnet
    Lua wait sleep
    Lua io.open read write seek flush setvbuf append
    stream file 文件 数据流
    AHK通讯 CMD Lua IPC
    零散 Lua/Excel/''/iup
    Windows Program File(x86) 路径 环境变量
    条件正则过滤筛选 V2
    条件正则过滤筛选 V1
    python导包出现的问题
  • 原文地址:https://www.cnblogs.com/czz0508/p/10334822.html
Copyright © 2011-2022 走看看