zoukankan      html  css  js  c++  java
  • A Simple Problem with Integers poj3468(线段树区间更新,区间查询)

    A Simple Problem with Integers
    Time Limit: 5000MS Memory Limit: 131072K
    Total Submissions: 128832 Accepted: 39978
    Case Time Limit: 2000MS
    Description


    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.


    Input


    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.


    Output


    You need to answer all Q commands in order. One answer in a line.


    Sample Input


    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    Sample Output


    4
    55
    9

    15

    题意:线段树模版题,区间更新和区间查询。

    线段树的原理,就是,将[1,n]分解成若干特定的子区间(数量不超过4*n),然后,将每个区间[L,R]都分解为
    少量特定的子区间,通过对这些少量子区间的修改或者统计,来实现快速对[L,R]的修改或者统计。

    #include<map>
    #include<stack>
    #include<queue>
    #include<math.h>
    #include<vector>
    #include<string>
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    #define LL long long
    #define inf 0x3f3f3f
    #define root  1,n,1
    #define lson  l,mid,rt<<1
    #define rson  mid+1,r,rt<<1|1
    using namespace std;
    const int maxn=100115;
    LL sum[maxn<<2];
    LL lazy[maxn<<2];
    int n,m;
    void PushUp(int rt)//向上更新求和
    {
        sum[rt]=sum[rt<<1]+sum[rt<<1|1];
    }
    void PushDown(int rt,int len)//用lazy数组标记,之后向下更新
    {
        if(lazy[rt])
        {
            lazy[rt<<1]+=lazy[rt];
            lazy[rt<<1|1]+=lazy[rt];
            sum[rt<<1]+=(len-(len>>1))*lazy[rt];
            sum[rt<<1|1]+=(len>>1)*lazy[rt];
            lazy[rt]=0;
        }
    }
    void Build(int l,int r,int rt)//建树
    {
        lazy[rt]=0;
        if(l==r){
          scanf("%I64d",&sum[rt]);
            return ;
        }
        int mid=l+r>>1;
        Build(lson);//建左儿子
        Build(rson);//右儿子
        PushUp(rt);//更新
    }
    void Update(int ll,int rr,int c,int l,int r,int rt)//区间更新
    {
        if(ll<=l&&rr>=r)//找到相应区间直接返回sum
        {
            sum[rt]+=(LL)(r-l+1)*c;
            lazy[rt]+=c;
            return ;
        }
        PushDown(rt,r-l+1);//向下更新sum
        int mid=l+r>>1;
        if(ll<=mid)  Update(ll,rr,c,lson);//在左儿子中找区间
        if(rr>mid)   Update(ll,rr,c,rson);//在右儿子中找
        PushUp(rt);//向上更新sum;
    }
    LL  Query(int ll,int rr,int l,int r,int rt)//区间查询
    {
        if(ll<=l&&rr>=r)
            return sum[rt];
        PushDown(rt,r-l+1);//把延迟的标记更新到对应的位置
        int mid=l+r>>1;
        LL cnt=0;
        if(ll<=mid) cnt+=Query(ll,rr,lson);
        if(rr>mid)  cnt+=Query(ll,rr,rson);
        return cnt;//返回区间的和
    }
    int main()
    {
        while(~scanf("%d%d",&n,&m))
        {
           Build(root);
           for(int i=0;i<m;i++){
            char s[3];int a,b,c;
            scanf("%s",s);
            if(s[0]=='Q'){scanf("%d%d",&a,&b);cout<<Query(a,b,root)<<endl;}
            else {scanf("%d%d%d",&a,&b,&c);Update(a,b,c,root);}
           }
        }
    }





  • 相关阅读:
    springBoot Mybaits分页错误
    验证码的技术实现原理
    《参与感》----产品篇
    参与感三三法则
    MIUI 的参与感
    从 UI 交互角度说语音识别产品
    语音识别开放平台调研以及主要技术
    测试蓝牙回连技术
    测试语音遥控器语音聊天的坑
    测试语音遥控器扫描连接的要点
  • 原文地址:https://www.cnblogs.com/da-mei/p/9053253.html
Copyright © 2011-2022 走看看