zoukankan      html  css  js  c++  java
  • HDU 5634 Rikka with Phi (线段树)

    Problem Description
    Rikka and Yuta are interested in Phi function (which is known as Euler's totient function).

    Yuta gives Rikka an array A[1..n] of positive integers, then Yuta makes m queries.  

    There are three types of queries: 

    1lr 

    Change A[i] into φ(A[i]), for all i[l,r].

    2lrx 

    Change A[i] into x, for all i[l,r].

    3lr 

    Sum up A[i], for all i[l,r].

    Help Rikka by computing the results of queries of type 3.

     

    Input
    The first line contains a number T(T100) ——The number of the testcases. And there are no more than 2 testcases with n>105

    For each testcase, the first line contains two numbers n,m(n3×105,m3×105)

    The second line contains n numbers A[i]

    Each of the next m lines contains the description of the query. 

    It is guaranteed that 1A[i]107 At any moment.
     

    Output
    For each query of type 3, print one number which represents the answer.
     

    Sample Input
    1 10 10 56 90 33 70 91 69 41 22 77 45 1 3 9 1 1 10 3 3 8 2 5 6 74 1 1 8 3 1 9 1 2 10 1 4 9 2 8 8 69 3 3 9
     

    Sample Output
    80 122 86
    在更新值变成欧拉函数相应的值的时候,效果最坏的情况是区间里每个点的值都不一样
    那么区间的每个点都要遍历到。然后由于第2个操作会将一段区间的值都变成相同的,所以
    在操作1的时候,可以不用更新每个点,只更新一下区间标记一下就可以。所以直接用线段树
    暴力来搞,发现是不会超时的。另外线段树的区间要注意,n最大是3*1e5;
    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    typedef long long int LL;
    const int maxn=1e5;
    bool check[maxn*100+5];
    LL prime[maxn*100+5];
    LL eul[maxn*100+5];
    LL sum[maxn*20+5];
    LL a[maxn*20+5];
    int n,m;
    /*void eular(){
        eul[1] = 1;
        for (int i = 2; i<maxn*100+5; i++) eul[i] = i;
        for (int i = 2; i<maxn*100+5; i++)
            if (eul[i] == i)
                for (int j = i; j<maxn*100+5; j += i) eul[j] = eul[j] / i*(i - 1);
    }
     */
    void eular()
    {
        memset(check,false,sizeof(check));
        eul[1]=1;
        int tot=0;
        for(int i=2;i<=maxn*100+5;i++)
        {
            if(!check[i])
            {
                prime[tot++]=i;
                eul[i]=i-1;
            }
            for(int j=0;j<tot;j++)
            {
                if(i*prime[j]>maxn*100+5) break;
                check[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    eul[i*prime[j]]=eul[i]*prime[j];
                    break;
                }
                else
                {
                    eul[i*prime[j]]=eul[i]*(prime[j]-1);
                }
                
            }
        }
    }
    
    void pushup(int node)
    {
        sum[node]=sum[node<<1]+sum[node<<1|1];
        if(a[node<<1]==a[node<<1|1])
            a[node]=a[node<<1];
        else
            a[node]=0;
    }
    void pushdown(int node,int l,int r)
    {
        int mid=(l+r)>>1;
        if(a[node])
        {
            sum[node<<1]=a[node]*(mid-l+1);
            sum[node<<1|1]=a[node]*(r-mid);
            a[node<<1]=a[node<<1|1]=a[node];
            //c[node<<1]=c[node<<1|1]=c[node];
            a[node]=0;
        }
    }
    void build(int node,int l,int r)
    {
        if(l==r)
        {
            scanf("%lld",&a[node]);
            sum[node]=a[node];
            return ;
        }
        int mid=(l+r)>>1;
        build(node<<1,l,mid);
        build(node<<1|1,mid+1,r);
        pushup(node);
    }
    void update1(int node,int l,int r,int L,int R,LL tag)
    {
        if(L<=l&&r<=R)
        {
            sum[node]=(LL)tag*(r-l+1);
            a[node]=tag;
            //c[node]=tag;
            return;
        }
        if(a[node]) pushdown(node,l,r);
        int mid=(l+r)>>1;
        if(L<=mid)
            update1(node<<1,l,mid,L,R,tag);
        if(R>mid)
            update1(node<<1|1,mid+1,r,L,R,tag);
        pushup(node);
    }
    void update2(int node,int l,int r,int L,int R)
    {
        if(L<=l&&r<=R)
        {
            if(a[node])
            {
                a[node]=eul[a[node]];
                sum[node]=a[node]*(r-l+1);
                return;
            }
            
            int mid=(l+r)>>1;
            if(L<=mid)
                update2(node<<1,l,mid,L,R);
            if(R>mid)
                update2(node<<1|1,mid+1,r,L,R);
            pushup(node);
            return ;
        }
        if(a[node]) pushdown(node,l,r);
        int mid=(l+r)>>1;
        if(L<=mid)
            update2(node<<1,l,mid,L,R);
        if(R>mid)
            update2(node<<1|1,mid+1,r,L,R);
        pushup(node);
    }
    LL query(int node,int l,int r,int L,int R)
    {
        if(L<=l&&r<=R)
        {
            return sum[node];
        }
        if(a[node]) pushdown(node,l,r);
        
        int mid=(l+r)>>1;
        LL ret=0;
        if(L<=mid)
            ret+=query(node<<1,l,mid,L,R);
        if(R>mid)
            ret+=query(node<<1|1,mid+1,r,L,R);
       
        return ret;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        int x,y,z;
        LL w;
        eular();
        while(t--)
        {
            scanf("%d%d",&n,&m);
            build(1,1,n);
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&x,&y,&z);
                if(x==1)
                {
                    update2(1,1,n,y,z);
                }
                else if(x==2)
                {
                    scanf("%lld",&w);
                    update1(1,1,n,y,z,w);
                }
                else
                {
                    printf("%lld
    ",query(1,1,n,y,z));
                }
            }
        }
        return 0;
    }


  • 相关阅读:
    [CQOI2015]选数
    利用匈牙利算法&HopcroftKarp算法解决二分图中的最大二分匹配问题 例poj 1469 COURSES
    玩家死亡,屏幕灰白效果实现
    Bool值相加
    (转)D3D性能优化
    Flash AS3视频教程
    Accurately Profiling Direct3D API Calls (Direct3D 9)
    菲涅尔反射
    sscanf时用到郁闷问题
    如何精确测量程序运行时间(转)
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228569.html
Copyright © 2011-2022 走看看