zoukankan      html  css  js  c++  java
  • ZOJ 3932 Deque and Balls

    There are n balls, where the i-th ball is labeled as pi. You are going to put n balls into a deque. In the i-th turn, you need to put the i-th ball to the deque. Each ball will be put to both ends of the deque with equal probability.

    Let the sequence (x1x2, ..., xn) be the labels of the balls in the deque from left to right. The beauty of the deque B(x1x2, ..., xn) is defined as the number of descents in the sequence. For the sequence (x1x2, ..., xn), a descent is a position i (1 ≤ i < n) with xi > xi+1.

    You need to find the expected value of B(x1x2, ..., xn).

    Deque is a double-ended queue for which elements can be added to or removed from either the front (head) or the back (tail).

    Input

    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integer n (2 ≤ n ≤ 100000) -- the number of balls. The second line contains n integers: p1p2, ..., pn (1 ≤ pi ≤ n).

    Output

    For each test case, if the expected value is E, you should output E⋅2n mod (109 + 7).

    Sample Input

    2
    2
    1 2
    3
    2 2 2
    

    Sample Output

    2
    

    0

    第一次遇到求期望的DP题目,每一个数a[i],都可以和前面的数相邻,只要不和自己相同都可以产生新的逆序。所以加上i-1已经

    产生的逆序数*2,再加上新产生的逆序数,要减去和相邻是自己相同的数的排列,用一个数组去维护这个排列数

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <stdlib.h>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    typedef long long LL;
    const LL  mod=1e9+7;
    #define MAX 100000
    LL dp[MAX+5];
    LL p[MAX+5];
    LL num[MAX+5];
    int n;
    int fun()
    {
        p[0]=0;p[1]=1;
        for(int i=2;i<=MAX+5;i++)
        {
            p[i]=(p[i-1]*2)%mod;
        }
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        int a;
        fun();
        while(t--)
        {
            scanf("%d",&n);
            memset(dp,0,sizeof(dp));
            memset(num,0,sizeof(num));
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a);
                dp[i]=(2*dp[i-1]+p[i-1]-num[a]+mod)%mod;
                if(i==1)
                     num[a]=(num[a]+1)%mod;
                else
                     num[a]=(num[a]+p[i-1])%mod;
    
            }
            dp[n]=(dp[n]*2)%mod;
            printf("%lld
    ",dp[n]);
        }
        return 0;
    }


  • 相关阅读:
    Matlab 将RGB 图像转换成YCrCb图像
    dotnet中文字符工具类
    dotnet验证参数
    dotnet + LinQ 按照指定的字段 和 排序方式排序
    Angulaur导入其他位置的样式
    Angular4.x跨域请求
    Spring Cloud微服务实战:手把手带你整合eureka&zuul&feign&hystrix
    关于JVM加载class文件和类的初始化
    JVM垃圾回收机制概述
    深入理解JVM
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228729.html
Copyright © 2011-2022 走看看