zoukankan      html  css  js  c++  java
  • HOJ 2139 Spiderman's workout(动态规划)

    Spiderman’s workout
    My Tags (Edit)
    Source : Nordic Collegiate Programming Contest 2003
    Time limit : 3 sec Memory limit : 32 M
    Submitted : 93, Accepted : 59
    Staying fit is important for every super hero, and Spiderman is no exception. Every day he undertakes a climbing exercise in which he climbs a certain distance, rests for a minute, then climbs again, rests again, and so on. The exercise is described by a sequence of distances d1, d2, … , dm telling how many meters he is to climb before the first first break, before the second break, and so on. Froman exercise perspective it does not really matter if he climbs up or down at the i:th climbing stage, but it is practical to sometimes climb up and sometimes climb down so that he both starts and finishes at street level. Obviously, he can never be below street level. Also, he would like to use as low a building as possible (he does not like to admit it, but he is actually afraid of heights). The building must be at least 2 meters higher than the highest point his feet reach during the workout.
    He wants your help in determining when he should go up and when he should go down. The answer must be legal: it must start and end at street level (0 meters above ground) and it may never go below street level. Among the legal solutions he wants one that minimizes the required building height. When looking for a solution, you may not reorder the distances.
    If the distances are 20 20 20 20 he can either climb up, up, down, down or up, down, up, down. Both are legal, but the second one is better (in fact optimal) because it only requires a building of height 22, whereas the first one requires a building of height 42. If the distances are 3 2 5 3 1 2, an optimal legal solution is to go up, up, down, up, down, down. Note that for some distance sequences there is no legal solution at all (e.g., for 3 4 2 1 6 4 5).
    Input
    The first line of the input contains an integer N giving the number of test scenarios. The following 2N lines specify the test scenarios, two lines per scenario: the first line gives a positive integer M <= 40 which is the number of distances, and the following line contains the M positive integer distances. For any scenario, the total distance climbed (the sum of the distances in that scenario) is at most 1000.
    Output
    For each input scenario a single line should be output. This line should either be the string “IMPOSSIBLE” if no legal solution exists, or it should be a string of length M containing only the characters “U” and “D”, where the i:th character indicates if Spiderman should climb up or down at the i:th stage. If there are several different legal and optimal solutions, output one of them (it does not matter which one as long as it is optimal).
    Sample Input
    3
    4
    20 20 20 20
    6
    3 2 5 3 1 2
    7
    3 4 2 1 6 4 5
    Sample Output
    UDUD
    UUDUDD
    IMPOSSIBLE

    现在越来越发现做动态规划题目关键是状态表示,如果你想到正确的状态,那么状态递推就容易了。

    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    #include <stdlib.h>
    
    using namespace std;
    #define MAX 10000000
    int dp[45][1005];
    int pre[45][1005];
    int n;
    int a[45];
    void dfs(int x,int height)
    {
            if(x==0)
                    return;
            dfs(x-1,pre[x][height]);
            if(height>pre[x][height])
                    printf("U");
            else
                    printf("D");
    }
    int main()
    {
            int t;
            scanf("%d",&t);
            while(t--)
            {
                    scanf("%d",&n);
                    for(int i=1;i<=n;i++)
                    {
                            scanf("%d",&a[i]);
                    }
                    for(int i=0;i<=n;i++)
                            for(int j=0;j<=1000;j++)
                                    dp[i][j]=MAX;
                    dp[0][0]=0;
                    for(int i=1;i<=n;i++)
                    {
                            for(int j=0;j<=1000;j++)
                            {
                                    if(j-a[i]>=0&&dp[i-1][j-a[i]]!=MAX)
                                    {
                                            if(dp[i][j]>max(dp[i-1][j-a[i]],j))
                                            {
                                                dp[i][j]=max(dp[i-1][j-a[i]],j);
                                               pre[i][j]=j-a[i];
                                            }                                                                                                                                                                                                              
                                    }
                                    if(j+a[i]<=1000&&dp[i-1][j+a[i]]!=MAX)
                                    {
                                            if(dp[i][j]>max(dp[i-1][j+a[i]],j))
                                            {
                                                    dp[i][j]=max(dp[i-1][j+a[i]],j);
                                                    pre[i][j]=j+a[i];
                                            }
                                    }
                            }
                    }
                    if(dp[n][0]==MAX)
                            printf("IMPOSSIBLE
    ");
                    else
                    {
                            dfs(n,0);
                            printf("
    ");
                    }
            }
            return 0;
    }
  • 相关阅读:
    SQLSERVER2008数据库增量备份还原方式
    使用VS2003遇到“无法显示进程。没有正确安装调试器。请运行安装程序安装或修复调试器。”的解决方法
    IIS7下配置最大上传附件大小需要注意的事项
    运行常用指令
    跨库查询推荐使用的方法
    获取客户端IP需要注意的一个问题
    如何判断一个表是否建立索引约束等信息的SQL语句
    SQLServer2005重建索引前后对比
    一个鼠标滚轮控制大小的缩放类。
    全兼容的纯CSS级联菜单
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228776.html
Copyright © 2011-2022 走看看