zoukankan      html  css  js  c++  java
  • HOJ 2985 Wavio Sequence(最长递增子序列以及其O(n*logn)算法)

    Wavio Sequence
    My Tags (Edit)
    Source : UVA
    Time limit : 1 sec Memory limit : 32 M
    Submitted : 296, Accepted : 123
    Wavio is a sequence of integers. It has some interesting properties.
    Wavio is of odd length i.e. L = 2 * n + 1.
    The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
    The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
    No two adjacent integers are same in a Wavio sequence.
    For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
    1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
    Here the longest Wavio sequence is: 1 2 3 4 5 4 3 2 1. So, the output will be 9.
    Input
    The input file contains multiple test cases. The description of each test case is given below. Input is terminated by end of file.
    Each set starts with a postive integer, N(1 ≤ N ≤ 10000). In next few lines there will be N integers.
    Output
    For each set of input print the length of longest wavio sequence in a line.
    Sample Input
    10
    1 2 3 4 5 4 3 2 1 10
    19
    1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1
    5
    1 2 3 4 5
    Sample Output
    9
    9
    1

    解法是将数组正着和倒着分别求一下最长递增子序列,然后遍历i,如果i左边的数组和右边的数组的最长子序列相等,就是符合条件的。如果求最长递增子序列用O(N^2)会超时,所以必须用效率高的算法。。关于O(n*logn)算法请参考以下博客
    http://blog.csdn.net/dacc123/article/details/50571844
    贴上代码

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <math.h>
    #include <algorithm>
    
    using namespace std;
    int a[10005];
    int b[10005];
    int c[10005];
    int d[10005];
    int dp[10005];
    int bp[10005];
    int n;
    int ans;
    int search(int num,int l,int r,int *dp)
    {
        int mid;
        while(l<=r)
        {
            mid=(l+r)/2;
            if(num>dp[mid])
                l=mid+1;
            else
                r=mid-1;
        }
        return l;
    }
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            ans=0;
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
                b[n-i+1]=a[i];
            }
            //memset(dp,0,sizeof(dp));
            dp[1]=a[1];
            c[1]=1;
            int len=1;
            for(int i=2;i<=n;i++)
            {
                if(a[i]>dp[len])
                    dp[++len]=a[i];
                else
                {
                    int pos=search(a[i],1,len,dp);
                    dp[pos]=a[i];
                }
                c[i]=len;
            }
            bp[1]=b[1];
            d[1]=1;
            int len2=1;
            for(int i=2;i<=n;i++)
            {
                if(b[i]>bp[len2])
                    bp[++len2]=b[i];
                else
                {
                    int pos=search(b[i],1,len2,bp);
                    bp[pos]=b[i];
                }
                d[i]=len2;
            }
            for(int i=1;i<=n;i++)
            {
                if(c[i]==d[n-i+1])
                    ans=max(ans,c[i]*2-1);
            }
            printf("%d
    ",ans);
    
        }
        return 0;
    }
  • 相关阅读:
    javascript 事件冒泡的补充
    不存在的数组元素
    Android应用程序线程消息循环模型分析
    Android系统匿名共享内存(Anonymous Shared Memory)C++调用接口分析
    Linux下的压缩解压缩命令详解
    Android应用程序组件Content Provider简要介绍和学习计划
    Android应用程序组件Content Provider应用实例
    三层架构之初识庐山真面目
    Android系统的智能指针(轻量级指针、强指针和弱指针)的实现原理分析
    Android应用程序消息处理机制(Looper、Handler)分析
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228798.html
Copyright © 2011-2022 走看看