zoukankan      html  css  js  c++  java
  • HOJ 1438 The Tower of Babylon(线性DP)

    The Tower of Babylon
    My Tags
    Cancel - Seperate tags with commas.
    Source : University of Ulm Internal Contest 1996
    Time limit : 5 sec Memory limit : 32 M
    Submitted : 303, Accepted : 155
    Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story:
    The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
    They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked.
    Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
    Input Specification
    The input file will contain one or more test cases. The first line of each test case contains an integer n,
    representing the number of different blocks in the following data set. The maximum value for n is 30.
    Each of the next n lines contains three integers representing the values xi, yi and zi.
    Input is terminated by a value of zero (0) for n.
    Output Specification
    For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format “Case case: maximum height = height
    Sample Input
    1
    10 20 30
    2
    6 8 10
    5 5 5
    7
    1 1 1
    2 2 2
    3 3 3
    4 4 4
    5 5 5
    6 6 6
    7 7 7
    5
    31 41 59
    26 53 58
    97 93 23
    84 62 64
    33 83 27
    0
    Sample Output
    Case 1: maximum height = 40
    Case 2: maximum height = 21
    Case 3: maximum height = 28
    Case 4: maximum height = 342

    思路:
    一个长方体可以有三种摆放方式,将所有摆放方式按照长,宽排序,随便哪个优先,然后再求最大上升子序列,上升的含义是严格的长减少,宽减少

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    
    using namespace std;
    struct Node
    {
        int x;
        int y;
        int z;
    }a[100];
    int cmp(Node a,Node b)
    {
        if(a.x==b.x)
            return a.y>b.y;
        return a.x>b.x;
    }
    int n;
    int dp[100];
    int vis[1000][1000];
    
    int main()
    {
        int l,w,h;
        int cas=0;
        while(scanf("%d",&n)!=EOF)
        {
            if(n==0)
                break;
            memset(vis,0,sizeof(vis));
            int cnt=0;
            for(int i=1;i<=n;i++)
            {
                scanf("%d%d%d",&l,&w,&h);
                    Node term;
                    term.x=l>w?l:w;term.y=l>w?w:l;term.z=h;
                    a[++cnt]=term;
                    Node term2;
                    term2.x=l>h?l:h;term2.y=l>h?h:l;term2.z=w;
                    a[++cnt]=term2;
                    Node term3;
                    term3.x=w>h?w:h;term3.y=w>h?h:w;term3.z=l;
                    a[++cnt]=term3;
    
            }
            sort(a+1,a+cnt+1,cmp);
            a[cnt+1].x=-1;a[cnt+1].y=-1;a[cnt+1].z=0;
            for(int i=1;i<=cnt+1;i++)
            {
                int num=0;
                for(int j=i-1;j>=1;j--)
                {
                    if(a[i].x<a[j].x&&a[i].y<a[j].y)
                    {
                        num=max(num,dp[j]);
                    }
                }
                dp[i]=num+a[i].z;
            }
            printf("Case %d: maximum height = %d
    ",++cas,dp[cnt+1]);
        }
        return 0;
    }
  • 相关阅读:
    (转) asp.net中使用ajax中的三种方式
    转ASP.NET 防盗链的实现[HttpHandler]
    (转)ADO.net,Linq to SQL和Entity Framework性能实测分析
    (转) JS日历控件集合附效果图、源代码
    正则表达式收集
    Asp.net 打开页面错误 (无法显示 XML 页。使用 XSL 样式表无法查看 XML 输入。请更正错误然后单击 刷新按钮,或以后重试。)
    SQL优化原则
    转载 25个优秀的 ASP.NET MVC教程及文章
    SQL 时间格式格式化
    任务失败,原因是未找到“LC.exe”,或未安装正确的 Microsoft Windows SDK。
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228802.html
Copyright © 2011-2022 走看看