zoukankan      html  css  js  c++  java
  • POJ-2018 Best Cow Fences(二分加DP)

    Best Cow Fences
    Time Limit: 1000MS Memory Limit: 30000K
    Total Submissions: 10174 Accepted: 3294
    Description

    Farmer John’s farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.

    FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.

    Calculate the fence placement that maximizes the average, given the constraint.
    Input

    • Line 1: Two space-separated integers, N and F.

    • Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
      Output

    • Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.
      Sample Input

    10 6
    6
    4
    2
    10
    3
    8
    5
    9
    4
    1
    Sample Output

    6500

    二分加DP的题目前面也做到过一道题目。选取序列的最大值和最小值,平均值在二者之间。然后二分。判断这个值是比答案的大还是小,就要用到dp。把数列的每个值都减去这个平均值,如果存在区间和大于等于0,说明这个数列存在平均在比这个还大的。用dp的思想来求这个序列最大区间和,注意区间长度要大于等于f的情况下。

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <math.h>
    #include <stdlib.h>
    
    using namespace std;
    #define MAX 100000
    double a[MAX+5];
    double s[MAX+5];
    int n,f;
    int fun(double ave)
    {
    
         double num1=s[f-1]-(f-1)*ave;
        for(int i=f;i<=n;i++)
        {
            double num2=s[i]-s[i-f]-f*ave;
            num1=num1+a[i]-ave;
            num1=max(num1,num2);
            if(num1>-1e-6)
                return 1;
        }
        return 0;
    }
    int main()
    {
        double l,r;
        while(scanf("%d%d",&n,&f)!=EOF)
        {
            l=2000;
            r=-1;
    
            memset(s,0,sizeof(s));
    
            for(int i=1;i<=n;i++)
            {
                scanf("%lf",&a[i]);
                s[i]=s[i-1]+a[i];
                r=max(r,a[i]);
                l=min(l,a[i]);
            }
            double mid;
            while(r-l>=1e-6)
            {
                 mid=(l+r)/2;
                if(fun(mid))
                {
                    l=mid;
                }
                else
                    r=mid;
            }
            printf("%d
    ",(int)(r*1000));
        }
        return 0;
    }
  • 相关阅读:
    Oracle SQL语句大全(一)
    数据查询(3)-复杂查询(芮)
    数据查询(2)-高级查询(芮)
    数据查询(1)-简单查询(芮)
    T-SQL(5)-操作数据行(芮)
    T-SQL(4)-功能函数(芮)
    T-SQL(3)-批处理(芮)
    T-SQL(2)-逻辑控制(芮)
    T-SQL(1)-变量(芮)
    如何设计数据库(2)?(芮)
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228814.html
Copyright © 2011-2022 走看看