滑雪
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 86318 Accepted: 32289
Description
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-…-3-2-1更长。事实上,这是最长的一条。
Input
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
Output
输出最长区域的长度。
Sample Input
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
Sample Output
25
动态规划的题目
状态转移方程:dp[x][y]=max{四个方向的值}
其实这道题目又牵扯到了记忆化搜索和动态规划的联系。我初学动态规划,注意到了这类题目,大言不惭的进行总结:
if(dp[x][y])
return dp[x][y];
这个语句,是DFS函数里的非常重要的,也是记忆化搜索的源泉。http://blog.csdn.net/dacc123/article/details/50317371
这个博客里,我觉得和这个题目是有联系的,同样都是深度优先搜索的形式,完成了动态规划。区别是这个是在一个集合面找最大值,而另一个直接继承了。以后要继续关注,并进行总结。
#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
int n,m;
int a[105][105];
int dp[105][105];//代表从这个点出发可以达到的最远距离
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
bool tag;
int maxin;
int DFS(int x,int y)
{
if(dp[x][y])
return dp[x][y];
int res=0;
for(int i=0;i<4;i++)
{
int xx=x+dir[i][0];
int yy=y+dir[i][1];
if(xx<0||xx>n-1||yy<0||yy>m-1)
continue;
if(a[xx][yy]<a[x][y])
res=max(res,DFS(xx,yy));
}
dp[x][y]=res+1;
return dp[x][y];
}
int main()
{
int ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
ans=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
scanf("%d",&a[i][j]);
}
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(ans<DFS(i,j))
ans=DFS(i,j);
}
}
printf("%d
",ans);
}
return 0;
}