zoukankan      html  css  js  c++  java
  • pyautogui

    简介
    一款跨平台/无依赖的自动化测试工具,目测只能控制鼠标/键盘/获取屏幕尺寸/弹出消息框/截屏。

    安装
    pip install pyautogui
    鼠标键盘控制
    >>> import pyautogui
    >>> screenWidth, screenHeight = pyautogui.size()
    >>> currentMouseX, currentMouseY = pyautogui.position()
    >>> pyautogui.moveTo(100, 150)
    >>> pyautogui.click()
    >>> pyautogui.moveRel(None, 10) # move mouse 10 pixels down
    >>> pyautogui.doubleClick()
    >>> pyautogui.moveTo(500, 500, duration=2, tween=pyautogui.tweens.easeInOutQuad) # use tweening/easing function to move mouse over 2 seconds.
    >>> pyautogui.typewrite('Hello world!', interval=0.25) # type with quarter-second pause in between each key
    >>> pyautogui.press('esc')
    >>> pyautogui.keyDown('shift')
    >>> pyautogui.typewrite(['left', 'left', 'left', 'left', 'left', 'left'])
    >>> pyautogui.keyUp('shift')
    >>> pyautogui.hotkey('ctrl', 'c')
    显示消息弹出框
    >>> import pyautogui
    >>> pyautogui.alert('This is an alert box.')
    'OK'
    >>> pyautogui.confirm('Shall I proceed?')
    'Cancel'
    >>> pyautogui.confirm('Enter option.', buttons=['A', 'B', 'C'])
    'B'
    >>> pyautogui.prompt('What is your name?')
    'Al'
    >>> pyautogui.password('Enter password (text will be hidden)')
    'swordfish'
    截屏
    import pyautogui
    im1 = pyautogui.screenshot()
    im1.save('my_screenshot.png')
    im2 = pyautogui.screenshot('my_screenshot2.png')

    定位截屏

    >>> import pyautogui
    >>> button7location = pyautogui.locateOnScreen('button.png') # returns (left, top, width, height) of matching region
    >>> button7location
    (1416, 562, 50, 41)
    >>> buttonx, buttony = pyautogui.center(button7location)
    >>> buttonx, buttony
    (1441, 582)
    >>> pyautogui.click(buttonx, buttony) # clicks the center of where the button was found

  • 相关阅读:
    概率图模型 ——(6)团树传播算法
    概率图模型 ——(5)变量消元法求边缘概率
    Catkin workspace `/home/qian` is already initialized. No action taken.
    安装TensorRT
    vscode教程
    概率图模型 ——(4)因子图
    概率图模型 ——(3)马尔科夫随机场
    概率图模型 ——(2)贝叶斯网络
    概率图模型 ——(1)概率论与图论基础
    Kubernetes 是怎么实现服务发现的?
  • 原文地址:https://www.cnblogs.com/daijingkun/p/11243409.html
Copyright © 2011-2022 走看看