zoukankan      html  css  js  c++  java
  • C++——对象的初始化和清理

    对象的初始化和清理

    • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
    • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。

    1 构造函数和析构函数

    对象的初始化和清理也是两个非常重要的安全问题

    ​ 一个对象或者变量没有初始状态,对其使用后果是未知

    ​ 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

    c++利用了构造函数析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

    对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

    编译器提供的构造函数和析构函数是空实现。

    • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
    • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

    构造函数语法:类名(){}

    1. 构造函数,没有返回值也不写void
    2. 函数名称与类名相同
    3. 构造函数可以有参数,因此可以发生重载
    4. 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次

    析构函数语法: ~类名(){}

    1. 析构函数,没有返回值也不写void
    2. 函数名称与类名相同,在名称前加上符号 ~
    3. 析构函数不可以有参数,因此不可以发生重载
    4. 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
    class Person
    {
    public:
    	//构造函数
    	Person()
    	{
    		cout << "Person的构造函数调用" << endl;
    	}
    	//析构函数
    	~Person()
    	{
    		cout << "Person的析构函数调用" << endl;
    	}
    
    };
    
    void test01()
    {
    	Person p;
    }
    
    int main() {
    	
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    2 构造函数的分类及调用

    两种分类方式:

    ​ 按参数分为: 有参构造和无参构造

    ​ 按类型分为: 普通构造和拷贝构造

    三种调用方式:

    ​ 括号法

    ​ 显示法

    ​ 隐式转换法

    示例:

    //1、构造函数分类
    // 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
    // 按照类型分类分为 普通构造和拷贝构造
    
    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int a) {
    		age = a;
    		cout << "有参构造函数!" << endl;
    	}
    	//拷贝构造函数
    	Person(const Person& p) {
    		age = p.age;
    		cout << "拷贝构造函数!" << endl;
    	}
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int age;
    };
    
    //2、构造函数的调用
    //调用无参构造函数
    void test01() {
    	Person p; //调用无参构造函数
    }
    
    //调用有参的构造函数
    void test02() {
    
    	//2.1  括号法,常用
    	Person p1(10);
        //Person p2(10);//有参构造函数调用
    	//Person p3(p2);//拷贝构造函数调用
    	//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
    	//Person p2();
    
    	//2.2 显式法
    	Person p2 = Person(10); 
    	Person p3 = Person(p2);
    	//Person(10)单独写就是匿名对象  当前行结束之后,马上析构
    
    	//2.3 隐式转换法
    	Person p4 = 10; // Person p4 = Person(10); 
    	Person p5 = p4; // Person p5 = Person(p4); 
    
    	//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
    	//Person p5(p4);
    }
    
    int main() {
    
    	test01();
    	//test02();
    
    	system("pause");
    
    	return 0;
    }
    

    3 拷贝构造函数调用时机

    C++中拷贝构造函数调用时机通常有三种情况

    • 使用一个已经创建完毕的对象来初始化一个新对象
    • 值传递的方式给函数参数传值
    • 以值方式返回局部对象

    示例:

    class Person {
    public:
    	Person() {
    		cout << "无参构造函数!" << endl;
    		mAge = 0;
    	}
    	Person(int age) {
    		cout << "有参构造函数!" << endl;
    		mAge = age;
    	}
    	Person(const Person& p) {
    		cout << "拷贝构造函数!" << endl;
    		mAge = p.mAge;
    	}
    	//析构函数在释放内存之前调用
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int mAge;
    };
    
    //1. 使用一个已经创建完毕的对象来初始化一个新对象
    void test01() {
    
    	Person man(100); //p对象已经创建完毕
    	Person newman(man); //调用拷贝构造函数
    	Person newman2 = man; //拷贝构造
    
    	//Person newman3;
    	//newman3 = man; //不是调用拷贝构造函数,赋值操作
    }
    
    //2. 值传递的方式给函数参数传值
    //相当于Person p1 = p;
    void doWork(Person p1) {}
    void test02() {
    	Person p; //无参构造函数
    	doWork(p);
    }
    
    //3. 以值方式返回局部对象
    Person doWork2()
    {
    	Person p1;
    	cout << (int *)&p1 << endl;
    	return p1;
    }
    
    void test03()
    {
    	Person p = doWork2();
    	cout << (int *)&p << endl;
    }
    
    
    int main() {
    
    	//test01();
    	//test02();
    	test03();
    
    	system("pause");
    
    	return 0;
    }
    

    4 构造函数调用规则

    默认情况下,c++编译器至少给一个类添加3个函数

    1.默认构造函数(无参,函数体为空)

    2.默认析构函数(无参,函数体为空)

    3.默认拷贝构造函数,对属性进行值拷贝

    构造函数调用规则如下:

    • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造

    • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

    示例:

    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int a) {
    		age = a;
    		cout << "有参构造函数!" << endl;
    	}
    	//拷贝构造函数
    	Person(const Person& p) {
    		age = p.age;
    		cout << "拷贝构造函数!" << endl;
    	}
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    	}
    public:
    	int age;
    };
    
    void test01()
    {
    	Person p1(18);
    	//如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作
    	Person p2(p1);
    
    	cout << "p2的年龄为: " << p2.age << endl;
    }
    
    void test02()
    {
    	//如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造
    	Person p1; //此时如果用户自己没有提供默认构造,会出错
    	Person p2(10); //用户提供的有参
    	Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供
    
    	//如果用户提供拷贝构造,编译器不会提供其他构造函数
    	Person p4; //此时如果用户自己没有提供默认构造,会出错
    	Person p5(10); //此时如果用户自己没有提供有参,会出错
    	Person p6(p5); //用户自己提供拷贝构造
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    5 深拷贝与浅拷贝

    深浅拷贝是面试经典问题,也是常见的一个坑

    浅拷贝:简单的赋值拷贝操作,带来的问题:堆区的内存重复释放

    深拷贝:在堆区重新申请空间,进行拷贝操作

    示例:

    class Person {
    public:
    	//无参(默认)构造函数
    	Person() {
    		cout << "无参构造函数!" << endl;
    	}
    	//有参构造函数
    	Person(int age ,int height) {
    		
    		cout << "有参构造函数!" << endl;
    
    		m_age = age;
    		m_height = new int(height);
    		
    	}
    	//拷贝构造函数  
    	Person(const Person& p) {
    		cout << "拷贝构造函数!" << endl;
    		//如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
    		m_age = p.m_age;
    		m_height = new int(*p.m_height);
    		
    	}
    
    	//析构函数
    	~Person() {
    		cout << "析构函数!" << endl;
    		if (m_height != NULL)
    		{
    			delete m_height;
    		}
    	}
    public:
    	int m_age;
    	int* m_height;
    };
    
    void test01()
    {
    	Person p1(18, 180);
    
    	Person p2(p1);
    
    	cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;
    
    	cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

    6 初始化列表

    作用:

    C++提供了初始化列表语法,用来初始化属性

    语法:构造函数():属性1(值1),属性2(值2)... {}

    示例:

    class Person {
    public:
    
    	////传统方式初始化
    	//Person(int a, int b, int c) {
    	//	m_A = a;
    	//	m_B = b;
    	//	m_C = c;
    	//}
    
    	//初始化列表方式初始化
    	Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
    	void PrintPerson() {
    		cout << "mA:" << m_A << endl;
    		cout << "mB:" << m_B << endl;
    		cout << "mC:" << m_C << endl;
    	}
    private:
    	int m_A;
    	int m_B;
    	int m_C;
    };
    
    int main() {
    
    	Person p(1, 2, 3);
    	p.PrintPerson();
    
    
    	system("pause");
    
    	return 0;
    }
    

    7 类对象作为类成员

    C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

    例如:

    class A {}
    class B
    {
        A a;
    }
    

    B类中有对象A作为成员,A为对象成员

    那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

    示例:

    class Phone
    {
    public:
    	Phone(string name)
    	{
    		m_PhoneName = name;
    		cout << "Phone构造" << endl;
    	}
    
    	~Phone()
    	{
    		cout << "Phone析构" << endl;
    	}
    
    	string m_PhoneName;
    
    };
    
    
    class Person
    {
    public:
    
    	//初始化列表可以告诉编译器调用哪一个构造函数
    	Person(string name, string pName) :m_Name(name), m_Phone(pName)
    	{
    		cout << "Person构造" << endl;
    	}
    
    	~Person()
    	{
    		cout << "Person析构" << endl;
    	}
    
    	void playGame()
    	{
    		cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
    	}
    
    	string m_Name;
    	Phone m_Phone;
    
    };
    void test01()
    {
    	//当类中成员是其他类对象时,我们称该成员为 对象成员
    	//构造的顺序是 :先调用对象成员的构造,再调用本类构造
    	//析构顺序与构造相反
    	Person p("张三" , "苹果X");
    	p.playGame();
    
    }
    
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    8 静态成员

    静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

    静态成员分为:

    • 静态成员变量
      • 所有对象共享同一份数据
      • 在编译阶段分配内存
      • 类内声明,类外初始化
    • 静态成员函数
      • 所有对象共享同一个函数
      • 静态成员函数只能访问静态成员变量

    示例1 :静态成员变量

    class Person
    {
    	
    public:
    
    	static int m_A; //静态成员变量
    
    	//静态成员变量特点:
    	//1 在编译阶段分配内存
    	//2 类内声明,类外初始化
    	//3 所有对象共享同一份数据
    
    private:
    	static int m_B; //静态成员变量也是有访问权限的
    };
    int Person::m_A = 10;
    int Person::m_B = 10;
    
    void test01()
    {
    	//静态成员变量两种访问方式
    
    	//1、通过对象
    	Person p1;
    	p1.m_A = 100;
    	cout << "p1.m_A = " << p1.m_A << endl;
    
    	Person p2;
    	p2.m_A = 200;
    	cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
    	cout << "p2.m_A = " << p2.m_A << endl;
    
    	//2、通过类名
    	cout << "m_A = " << Person::m_A << endl;
    
    
    	//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    

    示例2:静态成员函数

    class Person
    {
    
    public:
    
    	//静态成员函数特点:
    	//1 程序共享一个函数
    	//2 静态成员函数只能访问静态成员变量
    	
    	static void func()
    	{
    		cout << "func调用" << endl;
    		m_A = 100;
    		//m_B = 100; //错误,不可以访问非静态成员变量
    	}
    
    	static int m_A; //静态成员变量
    	int m_B; // 
    private:
    
    	//静态成员函数也是有访问权限的
    	static void func2()
    	{
    		cout << "func2调用" << endl;
    	}
    };
    int Person::m_A = 10;
    
    
    void test01()
    {
    	//静态成员变量两种访问方式
    
    	//1、通过对象
    	Person p1;
    	p1.func();
    
    	//2、通过类名
    	Person::func();
    
    
    	//Person::func2(); //私有权限访问不到
    }
    
    int main() {
    
    	test01();
    
    	system("pause");
    
    	return 0;
    }
    
    吾生也有涯,而知也无涯
  • 相关阅读:
    查找表类算法//同构字符串
    网页下载器urllib2实例
    网页下载器urllib2实例
    BeautifulSoup实例
    BeautifulSoup实例
    查找表类算法//有效的字母异位词
    查找表类算法//有效的字母异位词
    C++_函数3-引用变量与函数的默认参数
    C++_函数2-内联函数
    C++_函数1-编程的基本模块函数
  • 原文地址:https://www.cnblogs.com/daimasanjiaomao/p/13769761.html
Copyright © 2011-2022 走看看