zoukankan      html  css  js  c++  java
  • 淘宝图片指纹匹配功能c#实现

     #region 生成图片及图片比较
            public String GetHash(Image SourceImg)
            {
                Image image = ReduceSize(SourceImg);
                Byte[] grayValues = ReduceColor(image);
                Byte average = CalcAverage(grayValues);
                String reslut = ComputeBits(grayValues, average);
                return reslut;
            }
            // Step 1 : Reduce size to 8*8
            private Image ReduceSize(Image SourceImg)
            {
                int width = 8; int height = 8;
                Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, IntPtr.Zero);
                return image;
            }
    
            // Step 2 : Reduce Color
            private Byte[] ReduceColor(Image image)
            {
                Bitmap bitMap = new Bitmap(image);
                Byte[] grayValues = new Byte[image.Width * image.Height];
    
                for (int x = 0; x < image.Width; x++)
                    for (int y = 0; y < image.Height; y++)
                    {
                        Color color = bitMap.GetPixel(x, y);
                        byte grayValue = (byte)((color.R * 30 + color.G * 59 + color.B * 11) / 100);
                        grayValues[x * image.Width + y] = grayValue;
                    }
                return grayValues;
            }
    
            // Step 3 : Average the colors
            private Byte CalcAverage(byte[] values)
            {
                int sum = 0;
                for (int i = 0; i < values.Length; i++)
                    sum += (int)values[i];
                return Convert.ToByte(sum / values.Length);
            }
    
            // Step 4 : Compute the bits
            private String ComputeBits(byte[] values, byte averageValue)
            {
                char[] result = new char[values.Length];
                for (int i = 0; i < values.Length; i++)
                {
                    if (values[i] < averageValue)
                        result[i] = '0';
                    else
                        result[i] = '1';
                }
                return new String(result);
            }
            // Compare hash
            public Int32 CalcSimilarDegree(string a, string b)
            {
                if (a.Length != b.Length)
                    throw new ArgumentException();
                int count = 0;
                for (int i = 0; i < a.Length; i++)
                {
                    if (a[i] != b[i])
                        count++;
                }
                return count;
            }
            #endregion
    

      

    原理讲解

    参考Neal Krawetz博士的这篇文章, 实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似. 但关键是如何根据图片计算出"指纹"呢? 下面用最简单的步骤来说明一下原理:

    第一步 缩小图片尺寸

            将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构、明暗等基本信息.

    第二步 转为灰度图片

             将缩小后的图片, 转为64级灰度图片.

    第三步 计算灰度平均值

             计算图片中所有像素的灰度平均值

    第四步 比较像素的灰度

            将每个像素的灰度与平均值进行比较, 如果大于或等于平均值记为1, 小于平均值记为0.

    第五步 计算哈希值

             将上一步的比较结果, 组合在一起, 就构成了一个64位的二进制整数, 这就是这张图片的指纹.

    第六步 对比图片指纹

            得到图片的指纹后, 就可以对比不同的图片的指纹, 计算出64位中有多少位是不一样的. 如果不相同的数据位数不超过5, 就说明两张图片很相似, 如果大于10, 说明它们是两张不同的图片.

    参考文:https://blog.csdn.net/weixin_34066347/article/details/86363431

  • 相关阅读:
    [转] linux虚拟带库操作笔记
    [转] 在Linux平台使用mhVTL虚拟化磁带库
    [转] mhvtl虚拟磁带库的安装与应用
    RHEL 集群(RHCS)配置小记 -- 文档记录
    Oracle Database常用补丁集Patch号及各版本PSU
    [原创] ORA-01536 超出表空间 'xxxx' 的空间限额
    div里面的图片超出div的宽度,自动调整大小。
    SDNU 1269.整数序列(水题)
    SDNU 1254.Problem B. SOS(水题)
    SDNU 1245.这题超难的,建议先做其他的,看都不要看(思维)
  • 原文地址:https://www.cnblogs.com/daizhipeng/p/11102685.html
Copyright © 2011-2022 走看看