zoukankan      html  css  js  c++  java
  • ShardingJdbc整合水平分表

     创建数据库

    DROP TABLE IF EXISTS `t_order_1`;
    CREATE TABLE `t_order_1`(
    `order_id` bigint(20) NOT NULL COMMENT'订单id',
    `price` decimal(10,2) NOT NULL COMMENT'订单价格',
    `user_id` bigint(20) NOT NULL COMMENT'下单用户id', 
    `status`varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',  PRIMARY KEY (`order_id`) USING BTREE
    )ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    DROP TABLE IF EXISTS `t_order_2`;
    CREATE TABLE `t_order_2`(
    `order_id` bigint(20) NOT NULL COMMENT '订单id',
    `price` decimal(10,2) NOT NULL COMMENT '订单价格',
    `user_id` bigint(20) NOT NULL COMMENT '下单用户id',
    `status`varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',  PRIMARY KEY (`order_id`) USING BTREE
    )ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

     引入maven依赖 

    <dependencies>
    
            <dependency>
                <groupId>org.mybatis.spring.boot</groupId>
                <artifactId>mybatis-spring-boot-starter</artifactId>
                <version>2.1.1</version>
            </dependency>
    
    
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>druid-spring-boot-starter</artifactId>
                <version>1.1.16</version>
            </dependency>
    
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.47</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.shardingsphere</groupId>
                <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
                <version>4.0.0-RC1</version>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter</artifactId>
            </dependency>
    
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-test</artifactId>
                <scope>test</scope>
            </dependency>
        </dependencies>

    分片规则配置
    分片规则配置是sharding-jdbc进行对分库分表操作的重要依据,配置内容包括:数据源、主键生成策略、分片策
    略等。
    application.properties中配置

    server.port=56081
    
    spring.application.name = sharding-jdbc-simple-demo
    
    server.servlet.context-path = /sharding-jdbc-simple-demo
    spring.http.encoding.enabled = true
    spring.http.encoding.charset = UTF-8
    spring.http.encoding.force = true
    
    spring.main.allow-bean-definition-overriding = true
    
    mybatis.configuration.map-underscore-to-camel-case = true
    
    #sharding-jdbc分片规则配置
    #数据源
    spring.shardingsphere.datasource.names = m1
    
    spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.m1.driver-class-name = com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db?useUnicode=true
    spring.shardingsphere.datasource.m1.username = root
    spring.shardingsphere.datasource.m1.password = mysql
    
    # 指定t_order表的数据分布情况,配置数据节点 m1.t_order_1,m1.t_order_2
    spring.shardingsphere.sharding.tables.t_order.actual-data-nodes = m1.t_order_$->{1..2}
    
    # 指定t_order表的主键生成策略为SNOWFLAKE
    spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
    spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
    
    # 指定t_order表的分片策略,分片策略包括分片键和分片算法
    spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column = order_id
    spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression = t_order_$->{order_id % 2 + 1}
    
    # 打开sql输出日志
    spring.shardingsphere.props.sql.show = true
    
    swagger.enable = true
    
    logging.level.root = info
    logging.level.org.springframework.web = info
    logging.level.com.itheima.dbsharding  = debug
    logging.level.druid.sql = debug

    1.首先定义数据源m1,并对m1进行实际的参数配置。
    2.指定t_order表的数据分布情况,他分布在m1.t_order_1m1.t_order_2
    3.指定t_order表的主键生成策略为SNOWFLAKESNOWFLAKE是一种分布式自增算法,保证id全局唯一
    4.定义t_order分片策略,order_id为偶数的数据落在t_order_1,为奇数的落在t_order_2,分表策略的表达式为t_order_$->{order_id % 2 + 1} 

    数据库操作

    package com.topcheer.dbsharding.simple.dao;
    
    
    import org.apache.ibatis.annotations.Insert;
    import org.apache.ibatis.annotations.Mapper;
    import org.apache.ibatis.annotations.Param;
    import org.apache.ibatis.annotations.Select;
    import org.springframework.stereotype.Component;
    
    import java.math.BigDecimal;
    import java.util.List;
    import java.util.Map;
    
    /**
     * Created by Administrator.
     */
    @Mapper
    @Component
    public interface OrderDao {
    
        /**
         * 插入订单
         * @param price
         * @param userId
         * @param status
         * @return
         */
        @Insert("insert into t_order(price,user_id,status)values(#{price},#{userId},#{status})")
        int insertOrder(@Param("price") BigDecimal price, @Param("userId") Long userId, @Param("status") String status);
    
        /**
         * 根据id列表查询订单
         * @param orderIds
         * @return
         */
        @Select("<script>" +
                "select" +
                " * " +
                " from t_order t " +
                " where t.order_id in " +
                " <foreach collection='orderIds' open='(' separator=',' close=')' item='id'>" +
                " #{id} " +
                " </foreach>" +
                "</script>")
        List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds);
    }

    测试类

    @RunWith(SpringRunner.class)
    @SpringBootTest(classes = {ShardingJdbcSimpleBootstrap.class})
    public class ShardingJdbcDemoApplicationTests {
    
        @Autowired(required = false)
        OrderDao orderDao;
    
        @Test
        public void testInsertOrder(){
            for(int i=1;i<20;i++){
                orderDao.insertOrder(new BigDecimal(i),1L,"SUCCESS");
            }
        }
    
        @Test
        public void testSelectOrderbyIds(){
            List<Long> ids = new ArrayList<>();
            ids.add(435435795839451136L);
            ids.add(435435794501468161L);
    
            List<Map> maps = orderDao.selectOrderbyIds(ids);
            System.out.println(maps);
        }
    
    }

    当执行插入的方法的时候, 会把原来的sql进行解析,然后根据分片的规则,进行插入不同的表

    但执行查询的时候

     通过日志可以发现,根据传入order_id的奇偶不同,sharding-jdbc分别去不同的表检索数据,达到预期目标

    流程分析
    通过日志分析,Sharding-JDBC在拿到用户要执行的sql之后干了哪些事儿:
    1)解析sql,获取片键值,在本例中是order_id
    2Sharding-JDBC通过规则配置 t_order_$->{order_id % 2 + 1},知道了当order_id为偶数时,应该往
    t_order_1表插数据,为奇数时,往t_order_2插数据。
    3)于是Sharding-JDBC根据order_id的值改写sql语句,改写后的SQL语句是真实所要执行的SQL语句。
    4)执行改写后的真实sql语句
    5)将所有真正执行sql的结果进行汇总合并,返回。

    注意假如是配置类的形式进行配置的话,要排除

    @Configuration
    public class ShardingJdbcConfig {
    
        //配置分片规则
        // 定义数据源
        Map<String, DataSource> createDataSourceMap() {
            DruidDataSource dataSource1 = new DruidDataSource();
            dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
            dataSource1.setUrl("jdbc:mysql://rm-bp1y5jh79h6b3eh9clo.mysql.rds.aliyuncs.com:3306/order_db?useUnicode=true");
            dataSource1.setUsername("root");
            dataSource1.setPassword("1qaz@WSX");
            Map<String, DataSource> result = new HashMap<>();
            result.put("m1", dataSource1);
            return result;
        }
        // 定义主键生成策略
        private static KeyGeneratorConfiguration getKeyGeneratorConfiguration() {
            KeyGeneratorConfiguration result = new KeyGeneratorConfiguration("SNOWFLAKE","order_id");
            return result;
        }
    
        // 定义t_order表的分片策略
        TableRuleConfiguration getOrderTableRuleConfiguration() {
            TableRuleConfiguration result = new TableRuleConfiguration("t_order","m1.t_order_$->{1..2}");
            result.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "t_order_$->{order_id % 2 + 1}"));
            result.setKeyGeneratorConfig(getKeyGeneratorConfiguration());
    
            return result;
        }
        // 定义sharding-Jdbc数据源
        @Bean
        DataSource getShardingDataSource() throws SQLException {
            ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
            shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration());
            //spring.shardingsphere.props.sql.show = true
            Properties properties = new Properties();
            properties.put("sql.show","true");
            return ShardingDataSourceFactory.createDataSource(createDataSourceMap(), shardingRuleConfig,properties);
        }
    
    }
  • 相关阅读:
    hdu5894 hannnnah_j’s Biological Test(组合数取模)
    HDU5883 The Best Path(并查集+欧拉路)
    HDU5881 Tea(简单题)
    组合数取模
    codeforces703D Mishka and Interesting sum(区间偶数异或)
    upcoj2679 Binary Tree(思路题)
    upcoj2673 It Can Be Arranged(isap)
    atom编辑器适用
    python库pandas
    fabric Node SDK进行连接
  • 原文地址:https://www.cnblogs.com/dalianpai/p/12312484.html
Copyright © 2011-2022 走看看