zoukankan      html  css  js  c++  java
  • ThreadLocal源码分析

     1. ThreadLocal的内部结构

    1.1 常见的误解

    通常,如果我们不去看源代码的话,我猜ThreadLocal是这样子设计的:每个ThreadLocal类都创建一个Map,然后用线程的ID threadID作为Mapkey,要存储的局部变量作为Mapvalue,这样就能达到各个线程的局部变量隔离的效果。这是最简单的设计方法,JDK最早期的ThreadLocal就是这样设计的。

    1.2 核心结构

    但是,JDK后面优化了设计方案,现时JDK8 ThreadLocal的设计是:每个Thread维护一个ThreadLocalMap哈希表,这个哈希表的keyThreadLocal实例本身,value才是真正要存储的值Object

    (1) 每个Thread线程内部都有一个Map (ThreadLocalMap) (2) Map里面存储ThreadLocal对象(key)和线程的变量副本(value) (3)Thread内部的Map是由ThreadLocal维护的,由ThreadLocal负责向map获取和设置线程的变量值。 (4)对于不同的线程,每次获取副本值时,别的线程并不能获取到当前线程的副本值,形成了副本的隔离,互不干扰。

     

    1.3 这样设计的好处

    这个设计与我们一开始说的设计刚好相反,这样设计有如下两个优势:

    (1) 这样设计之后每个Map存储的Entry数量就会变少,因为之前的存储数量由Thread的数量决定,现在是由ThreadLocal的数量决定。

    (2) 当Thread销毁之后,对应的ThreadLocalMap也会随之销毁,能减少内存的使用。

     

    2. ThreadLocal的核心方法源码

    基于ThreadLocal的内部结构,我们继续探究一下ThreadLocal的核心方法源码,更深入的了解其操作原理。

    除了构造之外, ThreadLocal对外暴露的方法有以下4个:

    方法声明描述
    protected T initialValue() 返回当前线程局部变量的初始值
    public void set( T value) 设置当前线程绑定的局部变量
    public T get() 获取当前线程绑定的局部变量
    public void remove() 移除当前线程绑定的局部变量

    其实get,set和remove逻辑是比较相似的,我们要研究清楚其中一个,其他也就明白了。

    2.1 get方法

    (1 ) 源码和对应的中文注释

      /**
         * 返回当前线程中保存ThreadLocal的值
         * 如果当前线程没有此ThreadLocal变量,
         * 则它会通过调用{@link #initialValue} 方法进行初始化值
         *
         * @return 返回当前线程对应此ThreadLocal的值
         */
        public T get() {
            // 获取当前线程对象
            Thread t = Thread.currentThread();
            // 获取此线程对象中维护的ThreadLocalMap对象
            ThreadLocalMap map = getMap(t);
            // 如果此map存在
            if (map != null) {
                // 以当前的ThreadLocal 为 key,调用getEntry获取对应的存储实体e
                ThreadLocalMap.Entry e = map.getEntry(this);
                // 找到对应的存储实体 e 
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    // 获取存储实体 e 对应的 value值
                    // 即为我们想要的当前线程对应此ThreadLocal的值
                    T result = (T)e.value;
                    return result;
                }
            }
            // 如果map不存在,则证明此线程没有维护的ThreadLocalMap对象
            // 调用setInitialValue进行初始化
            return setInitialValue();
        }
    
        /**
         * set的变样实现,用于初始化值initialValue,
         * 用于代替防止用户重写set()方法
         *
         * @return the initial value 初始化后的值
         */
        private T setInitialValue() {
            // 调用initialValue获取初始化的值
            T value = initialValue();
            // 获取当前线程对象
            Thread t = Thread.currentThread();
            // 获取此线程对象中维护的ThreadLocalMap对象
            ThreadLocalMap map = getMap(t);
            // 如果此map存在
            if (map != null)
                // 存在则调用map.set设置此实体entry
                map.set(this, value);
            else
                // 1)当前线程Thread 不存在ThreadLocalMap对象
                // 2)则调用createMap进行ThreadLocalMap对象的初始化
                // 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
                createMap(t, value);
            // 返回设置的值value
            return value;
        }
    
        /**
         * 获取当前线程Thread对应维护的ThreadLocalMap 
         * 
         * @param  t the current thread 当前线程
         * @return the map 对应维护的ThreadLocalMap 
         */
        ThreadLocalMap getMap(Thread t) {
            return t.threadLocals;
        }
        /**
         *创建当前线程Thread对应维护的ThreadLocalMap 
         *
         * @param t 当前线程
         * @param firstValue 存放到map中第一个entry的值
         */
        void createMap(Thread t, T firstValue) {
            //这里的this是调用此方法的threadLocal
            t.threadLocals = new ThreadLocalMap(this, firstValue);
        }

    2 ) 代码执行流程

    A. 首先获取当前线程

    B. 根据当前线程获取一个Map

    C. 如果获取的Map不为空,则在Map中以ThreadLocal的引用作为key来在Map中获取对应的value e,否则转到E

    D. 如果e不为null,则返回e.value,否则转到E

    E. Map为空或者e为空,则通过initialValue函数获取初始值value,然后用ThreadLocal的引用和value作为firstKey和firstValue创建一个新的Map

    总结: 先获取当前线程的 ThreadLocalMap 变量,如果存在则返回值,不存在则创建并返回初始值。

    2.2 set方法

    (1 ) 源码和对应的中文注释

    /**
         * 设置当前线程对应的ThreadLocal的值
         *
         * @param value 将要保存在当前线程对应的ThreadLocal的值
         */
        public void set(T value) {
            // 获取当前线程对象
            Thread t = Thread.currentThread();
            // 获取此线程对象中维护的ThreadLocalMap对象
            ThreadLocalMap map = getMap(t);
            // 如果此map存在
            if (map != null)
                // 存在则调用map.set设置此实体entry
                map.set(this, value);
            else
                // 1)当前线程Thread 不存在ThreadLocalMap对象
                // 2)则调用createMap进行ThreadLocalMap对象的初始化
                // 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
                createMap(t, value);
        }

    (2 ) 代码执行流程

    A. 首先获取当前线程,并根据当前线程获取一个Map

    B. 如果获取的Map不为空,则将参数设置到Map中(当前ThreadLocal的引用作为key)

    C. 如果Map为空,则给该线程创建 Map,并设置初始值

    2.3 remove方法

    (1 ) 源码和对应的中文注释

    /**
         * 删除当前线程中保存的ThreadLocal对应的实体entry
         */
         public void remove() {
            // 获取当前线程对象中维护的ThreadLocalMap对象
             ThreadLocalMap m = getMap(Thread.currentThread());
            // 如果此map存在
             if (m != null)
                // 存在则调用map.remove
                // 以当前ThreadLocal为key删除对应的实体entry
                 m.remove(this);
         }

    2 ) 代码执行流程

    A. 首先获取当前线程,并根据当前线程获取一个Map

    B. 如果获取的Map不为空,则移除当前ThreadLocal对象对应的entry

    2.4 initialValue方法

    /**
      * 返回当前线程对应的ThreadLocal的初始值
      
      * 此方法的第一次调用发生在,当线程通过{@link #get}方法访问此线程的ThreadLocal值时
      * 除非线程先调用了 {@link #set}方法,在这种情况下,
      * {@code initialValue} 才不会被这个线程调用。
      * 通常情况下,每个线程最多调用一次这个方法。
      *
      * <p>这个方法仅仅简单的返回null {@code null};
      * 如果程序员想ThreadLocal线程局部变量有一个除null以外的初始值,
      * 必须通过子类继承{@code ThreadLocal} 的方式去重写此方法
      * 通常, 可以通过匿名内部类的方式实现
      *
      * @return 当前ThreadLocal的初始值
      */
    protected T initialValue() {
        return null;
    }

    此方法的作用是 返回该线程局部变量的初始值。

    (1) 这个方法是一个延迟调用方法,从上面的代码我们得知,在set方法还未调用而先调用了get方法时才执行,并且仅执行1次。

    (2)这个方法缺省实现直接返回一个null

    (3)如果想要一个除null之外的初始值,可以重写此方法。(备注: 该方法是一个protected的方法,显然是为了让子类覆盖而设计的)

    3. ThreadLocalMap源码分析

    3.1 基本结构

    ThreadLocalMap是ThreadLocal的内部类,没有实现Map接口,用独立的方式实现了Map的功能,其内部的Entry也是独立实现。

     

     (1) 成员变量

     /**
         * 初始容量 —— 必须是2的整次幂
         */
        private static final int INITIAL_CAPACITY = 16;
    
        /**
         * 存放数据的table,Entry类的定义在下面分析
         * 同样,数组长度必须是2的冥。
         */
        private Entry[] table;
    
        /**
         * 数组里面entrys的个数,可以用于判断table当前使用量是否超过负因子。
         */
        private int size = 0;
    
        /**
         * 进行扩容的阈值,表使用量大于它的时候进行扩容。
         */
        private int threshold; // Default to 0
        
        /**
         * 阈值设置为长度的2/3
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

    (2) 存储结构 - Entry

    // 在ThreadLocalMap中,也是用Entry来保存K-V结构数据的。但是Entry中key只能是ThreadLocal对象,这点被Entry的构造方法已经限定死了
    // 另外,Entry继承WeakReference,使用弱引用,可以将ThreadLocal对象的生命周期和线程生命周期解绑,持有对ThreadLocal的弱引用,可以使得ThreadLocal在没有其他强引用的时候被回收掉,这样可以避免因为线程得不到销毁导致ThreadLocal对象无法被回收
    
    static class Entry extends WeakReference<ThreadLocal> {
        /** The value associated with this ThreadLocal. */
        Object value;
    
        Entry(ThreadLocal k, Object v) {
            super(k);
            value = v;
        }
    }

    3.2 hash冲突的解决

    ThreadLocal使用的是自定义的ThreadLocalMap,接下来我们来探究一下ThreadLocalMap的hash冲突解决方式。

    (1) 先回顾ThreadLocal的set() 方法

     public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocal.ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
        
        ThreadLocal.ThreadLocalMap getMap(Thread t) {
            return t.threadLocals;
        }
    
        void createMap(Thread t, T firstValue) {
            t.threadLocals = new ThreadLocal.ThreadLocalMap(this, firstValue);
        }
    • 代码很简单,获取当前线程,并获取当前线程的ThreadLocalMap实例(从getMap(Thread t)中很容易看出来)。

    • 如果获取到的map实例不为空,调用map.set()方法,否则调用构造函数 ThreadLocal.ThreadLocalMap(this, firstValue)实例化map。

    可以看出来线程中的ThreadLocalMap使用的是延迟初始化,在第一次调用get()或者set()方法的时候才会进行初始化。

    (2) 下面来看看构造函数ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue)

    ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            //初始化table
            table = new ThreadLocal.ThreadLocalMap.Entry[INITIAL_CAPACITY];
            //计算索引
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            //设置值
            table[i] = new ThreadLocal.ThreadLocalMap.Entry(firstKey, firstValue);
            size = 1;
            //设置阈值
            setThreshold(INITIAL_CAPACITY);
        }

    主要说一下计算索引,firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1)

    • 关于& (INITIAL_CAPACITY - 1),这是取模的一种方式,对于2的幂作为模数取模,用此代替%(2^n),这也就是为啥容量必须为2的冥,在这个地方也得到了解答。

    • 关于firstKey.threadLocalHashCode

    private final int threadLocalHashCode = nextHashCode();
        
        private static int nextHashCode() {
            return nextHashCode.getAndAdd(HASH_INCREMENT);
        }
        private static AtomicInteger nextHashCode =  new AtomicInteger();
                
        private static final int HASH_INCREMENT = 0x61c88647;

    这里定义了一个AtomicInteger类型,每次获取当前值并加上HASH_INCREMENT,HASH_INCREMENT = 0x61c88647,这个值和斐波那契散列有关(这是一种乘数散列法,只不过这个乘数比较特殊,是32位整型上限2^32-1乘以黄金分割比例0.618....的值2654435769,用有符号整型表示就是-1640531527,去掉符号后16进制表示为0x61c88647),其主要目的就是为了让哈希码能均匀的分布在2的n次方的数组里, 也就是Entry[] table中,这样做可以尽量避免hash冲突。

    (3) ThreadLocalMap中的set()

    ThreadLocalMap使用开发地址-线性探测法来解决哈希冲突,线性探测法的地址增量di = 1, 2, ... 其中,i为探测次数。该方法一次探测下一个地址,直到有空的地址后插入,若整个空间都找不到空余的地址,则产生溢出。假设当前table长度为16,也就是说如果计算出来key的hash值为14,如果table[14]上已经有值,并且其key与当前key不一致,那么就发生了hash冲突,这个时候将14加1得到15,取table[15]进行判断,这个时候如果还是冲突会回到0,取table[0],以此类推,直到可以插入。

    按照上面的描述,可以把table看成一个环形数组

    先看一下线性探测相关的代码,从中也可以看出来table实际是一个环:

    /**
         * 获取环形数组的下一个索引
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }
    
        /**
         * 获取环形数组的上一个索引
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

    ThreadLocalMap的set()代码如下:

    private void set(ThreadLocal<?> key, Object value) {
            ThreadLocal.ThreadLocalMap.Entry[] tab = table;
            int len = tab.length;
            //计算索引,上面已经有说过。
            int i = key.threadLocalHashCode & (len-1);
    
            /**
             * 根据获取到的索引进行循环,如果当前索引上的table[i]不为空,在没有return的情况下,
             * 就使用nextIndex()获取下一个(上面提到到线性探测法)。
             */
            for (ThreadLocal.ThreadLocalMap.Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();
                //table[i]上key不为空,并且和当前key相同,更新value
                if (k == key) {
                    e.value = value;
                    return;
                }
                /**
                 * table[i]上的key为空,说明被回收了
                 * 这个时候说明改table[i]可以重新使用,用新的key-value将其替换,并删除其他无效的entry
                 */
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

    3.3内存泄漏

     每个thread中都存在一个map, map的类型是ThreadLocal.ThreadLocalMap. Map中的key为一个threadlocal实例. 这个Map的确使用了弱引用,不过弱引用只是针对key. 每个key都弱引用指向threadlocal. 当把threadlocal实例置为null以后,没有任何强引用指向threadlocal实例,所以threadlocal将会被gc回收. 但是,我们的value却不能回收,因为存在一条从current thread连接过来的强引用. 只有当前thread结束以后, current thread就不会存在栈中,强引用断开, Current Thread, Map, value将全部被GC回收.

      所以得出一个结论就是只要这个线程对象被gc回收,就不会出现内存泄露,但在threadLocal设为null和线程结束这段时间不会被回收的,就发生了我们认为的内存泄露。其实这是一个对概念理解的不一致,也没什么好争论的。最要命的是线程对象不被回收的情况,这就发生了真正意义上的内存泄露。比如使用线程池的时候,线程结束是不会销毁的,会再次使用的。就可能出现内存泄露。  

      PS.Java为了最小化减少内存泄露的可能性和影响,在ThreadLocal的get,set的时候都会清除线程Map里所有key为null的value。所以最怕的情况就是,threadLocal对象设null了,开始发生“内存泄露”,然后使用线程池,这个线程结束,线程放回线程池中不销毁,这个线程一直不被使用,或者分配使用了又不再调用get,set方法,那么这个期间就会发生真正的内存泄露。 

    synchronized是用时间换空间(牺牲时间)、ThreadLocal是用空间换时间(牺牲空间),为什么这么说?
    因为synchronized操作数据,只需要在主存存一个变量即可,就阻塞等共享变量,而ThreadLocal是每个线程都创建一块小的堆工作内存。显然,印证了上面的说法。
     
    一个线程对应一块工作内存,线程可以存储多个ThreadLocal。那么假设,开启1万个线程,每个线程创建1万个ThreadLocal,也就是每个线程维护1万个ThreadLocal小内存空间,而且当线程执行结束以后,假设这些ThreadLocal里的Entry还不会被回收,那么将很容易导致堆内存溢出。
     
    怎么办?难道JVM就没有提供什么解决方案吗?
    ThreadLocal当然有想到,所以他们把ThreadLocal里的Entry设置为弱引用,当垃圾回收的时候,回收ThreadLocal。
    什么是弱引用?
    1. Key使用强引用:也就是上述说的情况,引用ThreadLocal的对象被回收了,ThreadLocal的引用ThreadLocalMap的Key为强引用并没有被回收,如果不手动回收的话,ThreadLocal将不会回收那么将导致内存泄漏。
    2. Key使用弱引用:引用的ThreadLocal的对象被回收了,ThreadLocal的引用ThreadLocalMap的Key为弱引用,如果内存回收,那么将ThreadLocalMap的Key将会被回收,ThreadLocal也将被回收。value在ThreadLocalMap调用get、set、remove的时候就会被清除
    3. 比较两种情况,我们可以发现:由于ThreadLocalMap的生命周期跟Thread一样长,如果都没有手动删除对应key,都会导致内存泄漏,但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set,get,remove的时候会被清除
    那按你这么说,既然JVM有保障了,还有什么内存泄漏可言?
    ThreadLocalMap使用ThreadLocal对象作为弱引用,当垃圾回收的时候,ThreadLocalMap中Key将会被回收,也就是将Key设置为null的Entry。如果线程迟迟无法结束,也就是ThreadLocal对象将一直不会回收,回顾到上面存在很多线程+TheradLocal,那么也将导致内存泄漏。(内存泄露的重点)
     
    其实,在ThreadLocal中,当调用remove、get、set方法的时候,会清除为null的弱引用,也就是回收ThreadLocal。
     ThreadLocal提供一个线程(Thread)局部变量,访问到某个变量的每一个线程都拥有自己的局部变量。说白了,ThreadLocal就是想在多线程环境下去保证成员变量的安全。 

     

    弱引用:

     

  • 相关阅读:
    【Azure Redis 缓存】使用Azure Redis服务时候,如突然遇见异常,遇见命令Timeout performing SET xxxxxx等情况,如何第一时间查看是否有Failover存在呢?
    【Azure Redis 缓存】Azure Redis出现了超时问题后,记录一步一步的排查出异常的客户端连接和所执行命令的步骤
    【Azure Developer】Azure REST API: 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk
    【Azure Redis 缓存】云服务Worker Role中调用StackExchange.Redis,遇见莫名异常(RedisConnectionException: UnableToConnect on xxx 或 No connection is available to service this operation: xxx)
    【Azure 环境】Azure通知中心(Notification Hub)使用百度推送平台解说
    【Azure 应用服务】Azure Function App使用SendGrid发送邮件遇见异常消息The operation was canceled,分析源码渐入最源端
    客户案例:敏捷转型的二三事儿
    从科学管理到丰田生产模式,精益是如何产生的?
    业务降本增效,数字化转型有妙招
    规模化敏捷 LeSS(三):LeSS Huge 是怎样炼成的?
  • 原文地址:https://www.cnblogs.com/dalianpai/p/12623823.html
Copyright © 2011-2022 走看看