zoukankan      html  css  js  c++  java
  • an improved counting sort for handling negative integers, also take an easy performance compare

       1:  #include <stdio.h>
       2:  #include <stdlib.h>
       3:  #define MAX_LENGTH 9999
       4:  void print_array(const int a[],int size)
       5:  {
       6:      int i=0;
       7:      for(i=0;i<size;i++)
       8:      {
       9:          printf("%d,",a[i]);
      10:      }
      11:      printf("\n");
      12:  }
      13:   
      14:  /*
      15:  assume a[i]>0
      16:  */
      17:  void counting_sort(const int a[],int b[],int size,int maxvalue)
      18:  {
      19:      int i=0;
      20:      for(i=0;i<size;i++)
      21:      {
      22:          b[i]=0;
      23:      }
      24:   
      25:      int temp[maxvalue+1];
      26:      for(i=0;i<=maxvalue;i++)
      27:      {
      28:          temp[i]=0;
      29:      }
      30:   
      31:      for(i=0;i<size;i++)
      32:      {
      33:          temp[a[i]]+=1;
      34:      }
      35:   
      36:      for(i=1;i<=maxvalue;i++)
      37:      {
      38:          temp[i]=temp[i]+temp[i-1];
      39:      }
      40:   
      41:      for(i=size-1;i>=0;i--)
      42:      {
      43:          b[temp[a[i]]-1]=a[i];
      44:          temp[a[i]]=temp[a[i]]-1;
      45:      }
      46:  }
      47:   
      48:  /*
      49:  handle a[i] <0
      50:  */
      51:  void counting_sort2(const int a[],int b[],int size,int maxvalue)
      52:  {
      53:      int i=0;
      54:      int copyofa[size];
      55:      int min=0;
      56:      for(i=0;i<size;i++)
      57:      {
      58:          b[i]=0;
      59:          if(min>a[i])
      60:          {
      61:              min=a[i];
      62:          }
      63:      }
      64:   
      65:      int newmaxvalue=maxvalue-min;
      66:      for(i=0;i<size;i++)
      67:      {
      68:          copyofa[i]=a[i]-min;
      69:      }
      70:   
      71:      int temp[newmaxvalue+1];
      72:      for(i=0;i<=newmaxvalue;i++)
      73:      {
      74:          temp[i]=0;
      75:      }
      76:   
      77:      for(i=0;i<size;i++)
      78:      {
      79:          temp[copyofa[i]]+=1;
      80:      }
      81:   
      82:      for(i=1;i<=newmaxvalue;i++)
      83:      {
      84:          temp[i]=temp[i]+temp[i-1];
      85:      }
      86:   
      87:      for(i=size-1;i>=0;i--)
      88:      {
      89:          b[temp[copyofa[i]]-1]=copyofa[i];
      90:          temp[copyofa[i]]=temp[copyofa[i]]-1;
      91:      }
      92:   
      93:      for(i=0;i<size;i++)
      94:      {
      95:          b[i]=b[i]+min;
      96:      }
      97:  }
      98:   
      99:  void bubble_sort(const int a[],int b[],int size)
     100:  {
     101:      int i=0;
     102:      int j=0;
     103:      int temp;
     104:   
     105:      for(i=0;i<size;i++)
     106:      {
     107:          b[i]=a[i];
     108:      }
     109:   
     110:      for(i=0;i<size;i++)
     111:      {
     112:          for(j=i;j<size;j++)
     113:          {
     114:              if(b[j]<b[i])
     115:              {
     116:                  temp=b[i];
     117:                  b[i]=b[j];
     118:                  b[j]=temp;
     119:              }
     120:          }
     121:      }
     122:  }

    the second counting method is improved for handing negative integers.

    the first is O(n+k), the second is twice: O(2n+2k).

    write  a test program to compare these three subroutines,

       1:  int a[MAX_LENGTH];
       2:      int b[MAX_LENGTH];
       3:   
       4:      int i=0;
       5:      for(i=0;i<MAX_LENGTH;i++)
       6:      {
       7:          a[i]=rand();
       8:          b[i]=0;
       9:      }
      10:      for(i=0;i<1000;i++)
      11:      {
      12:          bubble_sort(a,b,MAX_LENGTH);
      13:          counting_sort2(a,b,MAX_LENGTH,RAND_MAX);
      14:          counting_sort(a,b,MAX_LENGTH,RAND_MAX);
      15:      }

    the result as follow:

    image

    we can see it’s very obvious that a O(n2) algorithm is heavy slower than O(n+k). to sort 9999 random integers it will cost 195.5ms each time sorting use bubble but only 0.17 ms by using counting method(0.35 for the second coutning sort, because its running time is O(2n+2k))

  • 相关阅读:
    实验四 决策树算法及应用
    实验三 朴素贝叶斯算法及应用
    实验二 K-近邻算法及应用
    实验一 感知器及其应用
    实验三 面向对象分析与设计
    实验二 结构化分析与设计
    实验一 软件开发文档与工具的安装与使用
    ATM管理系统
    活动图与流程图的区别与联系
    四则运算题目生成程序
  • 原文地址:https://www.cnblogs.com/dancewithautomation/p/2569296.html
Copyright © 2011-2022 走看看