zoukankan      html  css  js  c++  java
  • 转 Tesseract-OCR 字符识别---样本训练

    转自:http://blog.csdn.net/feihu521a/article/details/8433077


            Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由Google维护,目前发布在Googel Project上。地址为http://code.google.com/p/tesseract-ocr/


    使用默认的语言库识别


    1.安装Tesseract

            从http://code.google.com/p/tesseract-ocr/downloads/list下 载Tesseract,目前版本为Tesseract3.02。因为只是测试使用,这里直接下载winodws下的安装文件tesseract-ocr- setup-3.02.02.exe。安装成功后会在相应磁盘上生成一个Tesseract-OCR目录。通过目录下的tesseract.exe程序就 可以对图像字符进行识别了。
    2.准备一副待识别的图像,这里用画图工具随便写了一串数字,保存为number.jpg,如下图所示:
            

    3.  打开命令行,定位到Tesseract-OCR目录,输入命令:

     

    [plain] view plaincopy
     
    1. tesseract.exe number.jpg result -l eng  

     

         其中result表示输出结果文件txt名称,eng表示用以识别的语言文件为英文。

    3.  打开Tesseract-OCR目录下的result.txt文件,看到识别的结果为7542315857,有3个字符识别错误,识别率还不是很高,那 有没有什么方法来提供识别率呢?Tesseract提供了一套训练样本的方法,用以生成自己所需的识别语言库。下面介绍一下具体训练样本的方法。


         


    训练样本


    关于如何训练样本,Tesseract-OCR官网有详细的介绍http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3。这里通过一个简单的例子来介绍一下如何进行样本训练。

    1.下载工具jTessBoxEditor. http://sourceforge.net/projects/vietocr/files/jTessBoxEditor/,这个工具是用来训练样本用的,由于该工具是用JAVA开发的,需要安装JAVA虚拟机才能运行。

    2. 获取样本图像。用画图工具绘制了5张0-9的文样本图像(当然样本越多越好),如下图所示:

      

      


    3.合并样本图像。运行jTessBoxEditor工具,在点击菜单栏中Tools--->Merge TIFF。在弹出的对话框中选择样本图像(按Shift选择多张),合并成num.font.exp0.tif文件。

    4.生成Box File文件打开命令行,执行命令:

    [plain] view plaincopy
     
    1. tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox  

     

      生成的BOX文件为num.font.exp0.box,BOX文件为Tessercat识别出的文字和其坐标。

     

    注:Make Box File 文件名有一定的格式,不能随便乱取名字,命令格式为:

     

    [plain] view plaincopy
     
    1. tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox  

     

     

    其中lang为语言名称,fontname为字体名称,num为序号,可以随便定义。

    【Yasi】:先前自己定义了tessdata的环境变量 TESSDATA_PREFIX 值为 E: esseract essdata,但没有从tesseract源文件目录中将tessdata子目录中的内容copy到 E: esseract essdata 中,造成上面的命令报错,说找不到batch.nochop 和 makebox。解决办法:将 tesseract 源文件目录中所有文件和子文件夹(可能充分但非必要,先不管这些啦)copy到 E: esseract essdata 中

    5.文字校正。 运行jTessBoxEditor工具,打开num.font.exp0.tif文件(必须将上一步生成的.box和.tif样本文件放在同一目录),如 下图所示。可以看出有些字符识别的不正确,可以通过该工具手动对每张图片中识别错误的字符进行校正。校正完成后保存即可。

    【Yasi】这里必须修改识别错误的字符,否则做出来的traineddata文件也是错的。可以在下面的界面中修改并保存,也可以直接在traineddata文件中修改。



    6.定义字体特征文件。Tesseract-OCR3.01以上的版本在训练之前需要创建一个名称为font_properties的字体特征文件。

    font_properties不含有BOM头,文件内容格式如下:

     

    [plain] view plaincopy
     
    1. <fontname> <italic> <bold> <fixed> <serif> <fraktur>  

     

    其中fontname为字体名称,必须与[lang]. [fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。

    这里在样本图片所在目录下创建一个名称为font_properties的文件,用记事本打开,输入以下下内容:

     

    [plain] view plaincopy
     
    1. font 0 0 0 0 0  
    这里全取值为0,表示字体不是粗体、斜体等等。

     

    7.生成语言文件。在样本图片所在目录下创建一个批处理文件,输入如下内容。

     

    [plain] view plaincopy
     
    1. rem 执行改批处理前先要目录下创建font_properties文件  
    2. combine_tessdata.exe num.  

    将批处理通过命令行执行。执行后的结果如下:


    需确认打印结果中的Offset 1、3、4、5、13这些项不是-1。这样,一个新的语言文件就生成了。

    num.traineddata便是最终生成的语言文件,将生成的num.traineddata拷贝到Tesseract-OCR-->tessdata目录下。可以用它来进行字符识别了。


    使用训练后的语言库识别


    用训练后的语言库识别number.jpg文件, 打开命令行,定位到Tesseract-OCR目录,输入命令:

     

    [plain] view plaincopy
     
    1. tesseract.exe number.jpg result -l eng  

     

    识别结果如如图所示,可以看到识别率提高了不少。通过自定义训练样本,可以进行图形验证码、车牌号码识别等。感兴趣的朋友可以研究研究。

    【Yasi】试验结果如下:

    下面是num-yasi.png

    将生成的num.traineddata拷贝到E: esseract essdata,即环境变量TESSDATA_PREFIX 设置的路径下,执行下面的命令(注意第二条命令结尾是num,即新加的traineddata,而不是eng
    1. E: esseract esseract-svnvs2008LIB_Debug esseractd.exe num-yasi.png result-eng -l eng  
    2. E: esseract esseract-svnvs2008LIB_Debug esseractd.exe num-yasi.png result-num -l num  

    下图是两次识别结果对比


    使用eng traineddata的结果完全不靠谱;使用了自己的traineddata,识别出来的当然都是数字,但正确率实在糟糕。可能是我自己手写的字体和用来做traineddata的手写数字的字体差别太大了吧。

  • 相关阅读:
    matlab实现插值法sin函数
    matlab实现共轭梯度法、多元牛顿法、broyden方法
    matlab实现雅可比、高斯塞德尔、后项误差计算
    matlab实现高斯消去法、LU分解
    matlab实现不动点迭代、牛顿法、割线法
    matlab实现的嵌套乘法、高精度、二分法
    knn手写识别
    python笔记
    动态语言
    Spyder 快捷键
  • 原文地址:https://www.cnblogs.com/dancheblog/p/4775127.html
Copyright © 2011-2022 走看看