zoukankan      html  css  js  c++  java
  • 数据挖掘相关知识

    Association Rule(关联规则)

    (1)Support of an Itemset(支持项集)

    The support of an item (or itemset) X is the percentage of transactions in which that item (or itemset) occurs.项(或项集)X的支持是该项(或项集)发生的事务的百分比。

    (2)Support & Confidence of Association Rule(关联规则的支持度与置信度)

    The support of an association rule X->Y is the percentage of transactions that contain X and Y.

    (包含X和Y的事务百分比)

    The confidence of an association rule X->Y is the ratio of the number of transactions that contain {X, Y} to the number of transactions that contain X.

    ===>(包含x、y的事务数与包含x的事务数的比率)

    例:    

    1、Bread ->Milk

         Support: 2/8

         Confidence: 1/3

    2、Milk -> Bread

         Support: 2/8

         Confidence: 2/3

    Support and Confidence are bounded by thresholds:Minimum support σ、Minimum confidence Φ;
    A frequent (large) itemset is an itemset with support larger than σ.A strong rule is a rule that is frequent and its confidence is higher than Φ.

    误区:(1)一个规则很强并不不代表有意义。例:

    现在我们有了一个强有力的规则:磁带->DVD。似乎磁带有助于推销DVD,但是,P(DVD)=75%>P(DVD|Tape),磁带购买者不太可能购买DVD。
    置信度很大,但是小于先验概率;

    (2)当两个商品出现的概率相差很打时,产生的规则没有意义。

    (3)两件事情相关不等于因果关系。Association ≠ Causality。

    The Apriori Method:

    Key ideas:(1)A subset of a frequent itemset must be frequent.     eg:{Milk, Bread, Coke} is frequent  -> {Milk, Coke} is frequent;

                     (2)The supersets of any infrequent itemset cannot be frequent.    eg:{Battery} is infrequent -> {Milk, Battery} is infrequent.

    一般程序: 

                     

    (扫描数据库一次,看哪些是频繁的,再使用频繁项集来生成侯选项集,尽量避免去生成不频繁的候选项集,缺点:要多次扫描数据库)

    Aprior 算法:

    Ck: Candidate itemset of size k(长度为k的候选集)
    Lk: Frequent itemset of size k(长度为k的频繁项集)

    对数据集中的每条记录transaction

    对每个候选项集candidate:

      检查一下candidate是否是transaction的子集:

      如果是,则增加candidate的计数值

    对每个候选项集:

    如果其支持度不低于最小值,则保留该项集

    返回所有的频繁项集列表

  • 相关阅读:
    GPIO推挽输出和开漏输出详解
    Linux驱动中completion接口浅析(wait_for_complete例子,很好)【转】
    当JAVA集合移除自身集合元素时发生的诸多问题
    Machine Learning #Lab1# Linear Regression
    Nth to Last Node in List
    Codeforces Round #272 (Div. 2)AK报告
    iOS 使用Block实现函数回调
    ios上禁止输入表情
    POJ 1287:Networking(最小生成树Kruskal)
    CSS实现强制换行-------Day 78
  • 原文地址:https://www.cnblogs.com/danhuang101/p/10739433.html
Copyright © 2011-2022 走看看