zoukankan      html  css  js  c++  java
  • 深度图像特征在推荐和广告中的应用(三)

     

    image Matters: Jointly Train Advertising CTR Model with Image Representation of Ad and User Behavior

    阿里 2017 发表在 arxiv 的文章,与前面文章的区别在于,图像不单可以表征广告,用户点过的图像集合也可以用来表征用户,比如当前图片与用户点过的某张图片很相似,用户的点击概率就会比较高。文章利用广告相关id特征、用户相关id特征、广告图像特征、用户点击过的图像特征共同建模,end-to-end训练,预测最终的ctr。这篇文章对标 youtube 那篇做推荐的文章Deep Neural Networks for YouTube Recommendations里面的 rank model部分。

    点击率模型经常用到的 parameter server logistic regression(PSLR) 更擅长于记忆,而不是泛化,所以即使在rank模型中,遇到新的 id 时,还是存在冷启动问题。图像特征重要,相同的广告id用不同的图片,点击率可能完全不一样,所以图像特征其实有比较好的泛化能力,不同的广告用同一张图像,在用户无法分辨的情况下,点击率相同。

    整个模型框架如下:

    basicNet 和阿里那篇 Deep CTR Prediction in Display Advertising 一脉相承,通过全连接做 id 特征的向量化。AdNet采用VGG16的前14层,从图像提取 4096 维特征。可能是由于网络结果过于复杂,这里的卷积层是固定的,在rank部分不会调整,这样做也有一个好处,可以先把所有图片的 4096 维特征预先计算出来,CNN不用多次重复计算,也不需要更新权重,训练效率会高很多。固定CNN实际上也有不得已的地方,本文的创新点在于利用了UserNet,但是UseNet带来的一个弊端是,无法像之前两篇文章里将相同图片的样本聚合起来减少CNN部分的计算,因为UserNet的输入平均是37张图片的排列组合。在4096 维特征后面,又加入可训练的三个全连接层,把一张图像的特征降低到 12 维。

    UserNet 的结构与 AdNet一致,区别在于,用户点击包含多张图片(平均37张),如何把多张图片的12维特征整合成单独的12维,其中有一些简单的做法如 sum、avg、max,也有一些复杂的 attentive方法。

    根据后面训练的attentive权重来看,用户对相似图片的权重明显大。

    实验对比

    • 39亿样本,2亿图片,20台GPU集群训练,17个小时

    • 实验结果可以看到图像特征有一些提升,但是在添加用户点击行为中的图像特征,边际效益不是那么高。


     

    附:公众号 

  • 相关阅读:
    常用知识点集合
    LeetCode 66 Plus One
    LeetCode 88 Merge Sorted Array
    LeetCode 27 Remove Element
    LeetCode 26 Remove Duplicates from Sorted Array
    LeetCode 448 Find All Numbers Disappeared in an Array
    LeetCode 219 Contains Duplicate II
    LeetCode 118 Pascal's Triangle
    LeetCode 119 Pascal's Triangle II
    LeetCode 1 Two Sum
  • 原文地址:https://www.cnblogs.com/daniel-D/p/8051543.html
Copyright © 2011-2022 走看看